Blog

The Terrain Analysis System (TAS) now available as open-source GIS project

The creator of the Terrain Analysis System (TAS) has decided to migrate his package to open source. The new version of the software, now called “Whitebox Geospatial Analysis Tools” is available for download from the department homepages.

Prof. John Lindsay is currently looking for potential graduate students (Masters) to join his research programme at the University of Guelph. Interested individuals are encouraged to contact him.

Geomorphometry 2009 logistics

Map of events

The lecture theatre during Geomorphometry 2009 is Y35F32 where Y stands for Irchel campus, 35 is the building number, F is the floor and 32 is the room number.**
Download the campus map as PDF.**

Other useful links:

[ZVV] (Zurich public transport association): Timetable, information about tickets and fares, leisure and tourist information; [SBB] (Swiss Federal Railways): Timetable, information about tickets and fares. Both the ZVV and the SBB timetables combine information about the schedules of trains, trams, busses, ships.; [Website of Zurich Tourism]: Accomodation, tours and excursions, restaurants, events etc. [Zurich Airport]: Flight, transfer and general travel information; [Zurich webcams]; [Switzerland Tourism]; [MeteoSwiss]; [Webmaps]; [Webmap of Zurich Tourism]

Number of rooms Category Name Address  
Street Postcode Place      
budget City Backpackers Niederdorfstrasse 5 8001 Zurich
budget Etap Hotel Zurich City West Technoparkstrasse 2 8005 Zurich
- budget EasyHotel Zwinglistrasse 14 8004 Zurich
155 budget Hotel Ibis Zurich City West Schiffbaustrasse 11 8005 Zurich
178 budget Hotel Ibis Zurich Messe Airport Heidi Abel-Weg 5 8050 Zurich
budget Hotel Krone Limmatquai Limmatquai 88 8001 Zurich
budget Hotel Martahaus Zaehringerstrasse 36 8001 Zurich
51 budget Hotel Sternen-Oerlikon Schaffhauserstrasse 335 8050 Zurich
budget Zurich Youth Hostel Mutschellenstrasse 114 8038 Zurich
budget ZicZac Rock Hotel Marktgasse 17 8001 Zurich
36 intermediate Best Western Hotel Zuercherhof Zaehringerstrasse 21 8021 Zurich
intermediate Best Western Hotel Montana Konradstrasse 39 8005 Zurich
54 intermediate Hotel Bristol Stampfenbachstrasse 34 8006 Zurich
70 intermediate Comfort Inn Royal Leonhardstrasse 6 8001 Zurich
40 intermediate Hotel Coronado Schaffhauserstrasse 137 8057 Zurich
78 intermediate Hotel Leoneck (Crazy Cow) Leonhardstrasse 1 8001 Zurich
intermediate Hotel Limmathof Limmatquai 142 8001 Zurich
41 intermediate Hotel Rex Weinbergstrasse 92 8006 Zurich
intermediate X-TRA Limmatstrasse 118 8005 Zurich
138 luxurious Hotel Continental Stampfenbachstrasse 60 8006 Zurich
67 luxurious Leonardo Hotel Rigihof Universitaetstrasse 101 8033 Zurich
271 luxurious Zurich Marriott Neumuehlequai 42 8001 Zurich
204 luxurious Renaissance Zurich Hotel Thurgauerstrasse 101 8152 Zurich

Hotels Conorado and Sternen-Oerlikon offer special rates for university-related stays!

For all logistics issues, please feel free to contact the logistics chief: Ralph Straumann.

Attachment: Geomorphometry2009.zip

IALE2009 Symposium6 presentations online

Perhaps some of presentations could be of interest to geomorphometrists?

Lucian Drãgut, Ulrich Walz and Thomas Blaschke have organized the 6th Symposium- The third and fourth dimensions of landscapes- within the European Conference IALE2009. The contents of presentations in the symposium, as well as introduction and concluding remarks are available below:

  1. Introduction

  2. Höchstetter & Walz- 3D-metrics in landscape ecology – Methods and examples of use

  3. Laszczak & Kozak- Assessment of structural connectivity of a forested landscape in Poland using graph theory approach

  4. Victorov- Landscape metrics selection based on the mathematical models of landscape patterns

  5. Wickham & Riiters- A critique of patch-based landscape indicators for detection of temporal change in fragmentation

  6. Van Eetvelde & Käyhkö- The applicability of quantitative techniques for assessing spatio-temporal patterns of landscape changes

  7. Werbrouck, Van Eetvelde, Antrop & De Maeyer- Integrating historical maps and LiDAR elevation data for landscape reconstruction

  8. Marceau- Scale issues in Landscape Ecology research: A synthesis

  9. Scolozzi & Geneletti- A method to assess landscape functional connectivity at local scale for target species

  10. Díaz-Varela, Álvarez-Álvarez & Marey-Pérez- Influence of landscape pattern on scale divergence in categorical maps

  11. Völker & Büker- Automatic remote sensing methods for the monitoring of agricultural landscape lements in the context of IACS and cross compliance. Poster.

  12. Stupariu, Patru-Stupariu & Cuculici- Geometric techniques in quantifying landscape irregularities. Poster.

  13. Nedkov & Gikov- Modeling landscape heterogeneity in mountain areas: a case study from Rhodope Mountains, Bulgaria. Poster.

  14. Concluding remarks

Geomorphometry in R + SAGA + ILWIS + GRASS

This is a sample code to process Baranja hill DEM using a combination of R, SAGA, ILWIS and Google Earth (under MS Windows machines). All four packages are available as open source or freeware (GE). You first need to obtain and install R (including the maptools, gstat, rgdal and RSAGA packages), ILWIS 3.5, SAGA GIS and GRASS GIS. After you finished installing R, SAGA, ILWIS, GRASS, copy the code down-below and start running it line by line. If you experience problems, send as a post via the R-sig-geo or ILWIS mailing list. Note: in order to use the functionality of ILWIS, SAGA, GRASS, you need to install them first. These are not internal packages in R!

Fig: Screenshots of R + SAGA/GRASS/ILWIS integration

######## R script ###############
# DEM processing and extraction of channel networks;
library(maptools)
library(rgdal)
library(RSAGA)
# ! first download and install SAGA GIS [http://www.saga-gis.org], ILWIS GIS [https://52north.org/download/Ilwis/52n-Ilwis-v3-05-02.zip] and GRASS GIS [http://grass.itc.it] to your machine!
rsaga.env(path="C:/Progra~1/saga_vc")
ILWIS <- "C:\Progra~1\N52\Ilwis35\IlwisClient.exe -C"
MGI_Z6 <- "+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824 +units=m"
# The coordinate system is "MGI Zone 6"; see [http://spatial-analyst.net/wiki/index.php?title=MGI_/_Balkans_coordinate_systems]
setwd("C:/tmp")
# obtain the data:
download.file("http://geomorphometry.org/system/files/BaranjaHill.zip", destfile=paste(getwd(), "BaranjaHill.zip", sep="/"))
fname <- zip.file.extract(file="DEM25m.asc", zipname="BaranjaHill.zip")
file.copy(fname, "./DEM25m.asc", overwrite=TRUE)
list.files(pattern="asc")
dem25m <- readGDAL("DEM25m.asc")
proj4string(dem25m) <- CRS(MGI_Z6)
# view the data in ILWIS:
writeGDAL(dem25m[1], "dem25m.mpr", "ILWIS")
# set the right coordinate system!
download.file("http://spatial-analyst.net/CRS/gk_6.csy", destfile=paste(getwd(), "gk_6.csy", sep="/"))
shell(cmd=paste(ILWIS, "setcsy dem25m.grf gk_6.csy -force"), wait=F)
shell(cmd=paste(ILWIS, "open dem25m.mpr -noask"), wait=F)
# make a relief view in ILWIS:
shell(cmd=paste(ILWIS, "run C:\Progra~1\Ilwis3\Scripts\Hydro-DEM\dem_visualization dem25m.mpr dem25m_c.mpr"), wait=F)
# load to SAGA and derive drainage network:
rsaga.esri.to.sgrd(in.grids="dem25m.asc", out.sgrds="dem25m.sgrd", in.path=getwd())
# First, fill the spurious sinks:
rsaga.get.modules("ta_preprocessor")
rsaga.get.usage("ta_preprocessor", 2)
rsaga.geoprocessor(lib="ta_preprocessor", module=2, param=list(DEM="dem25m.sgrd", RESULT="dem25m_f.sgrd", MINSLOPE=0.05))
# Second, extract the channel network:
rsaga.get.modules("ta_channels")
rsaga.get.usage("ta_channels", 0)
rsaga.geoprocessor(lib="ta_channels", module=0, param=list(ELEVATION="dem25m.sgrd", CHNLNTWRK="channel_ntwrk.sgrd", CHNLROUTE="channel_route.sgrd", SHAPES="channels2.shp", INIT_GRID="dem25m.sgrd", DIV_CELLS=3, MINLEN=40))
channels <- readOGR("channels.shp", "channels")
spplot(channels["LENGTH"], col.regions=bpy.colors())
# derive Topographic Wetness Index:
rsaga.geoprocessor(lib="ta_hydrology", module=15, param=list(DEM="dem25m.sgrd", C="catharea.sgrd", GN="catchslope.sgrd", CS="modcatharea.sgrd", SB="TWI.sgrd", T=10))
# Export of grids to Google Earth using SAGA GIS:
rsaga.geoprocessor(lib="pj_proj4", 2, param=list(SOURCE_PROJ=paste('"', proj4string(dem25m), '"', sep=""), TARGET_PROJ=""+proj=longlat +datum=WGS84"", SOURCE="TWI.sgrd", TARGET="TWI_ll.sgrd", TARGET_TYPE=0, INTERPOLATION=0))
# export to PNG:
rsaga.geoprocessor(lib="io_grid_image", 0, param=list(GRID="TWI_ll.sgrd", FILE="TWI.png"))
# read back to R:
rsaga.sgrd.to.esri(in.sgrds="TWI_ll.sgrd", out.grids="TWI_ll.asc", prec=1, out.path=getwd())
TWI.ll <- readGDAL("TWI_ll.asc")
proj4string(TWI.ll) <- CRS("+proj=longlat +datum=WGS84")
TWI.kml <- GE_SpatialGrid(TWI.ll)
kmlOverlay(TWI.kml, kmlfile="TWI.kml", imagefile="TWI.png", name="Topographic Wetness Index")
# Optional: export to Google Earth using ILWIS:
dem25m.ll <- spTransform(dem25m[1], CRS("+proj=longlat +datum=WGS84"))
corrf <- (1+cos((dem25m.ll@bbox[2,2]+dem25m.ll@bbox[2,1])/2*pi/180))/2
geogrd.cell <- corrf*(dem25m.ll@bbox[1,2]-dem25m.ll@bbox[1,1])/dem25m@grid@cells.dim[1]
geoarc <- spsample(dem25m.ll, type="regular", cellsize=c(geogrd.cell,geogrd.cell))
gridded(geoarc) <- TRUE
gridparameters(geoarc)
gridparameters(dem25m)
# resample the map (Bilinear) to the new geographic grid:
shell(cmd=paste(ILWIS, " crgrf geoarc.grf ",geoarc@grid@cells.dim[[2]]," ",geoarc@grid@cells.dim[[1]]," -crdsys=LatlonWGS84 -lowleft=(",geoarc@grid@cellcentre.offset[[1]],",",geoarc@grid@cellcentre.offset[[2]],") -pixsize=",geoarc@grid@cellsize[[1]],sep=""), wait=F)
shell(cmd=paste(ILWIS, "dem25m_ll_c.mpr = MapResample(dem25m_c.mpr, geoarc, BiLinear)"), wait=F)
shell(cmd=paste(ILWIS, "open dem25m_ll_c.mpr -noask"))
shell(cmd=paste(ILWIS, "export tiff(dem25m_ll_c.mpr, dem25m_c.tif)"), wait=F)
# generate a KML (ground overlay):
dem25m.kml <- GE_SpatialGrid(geoarc)
kmlOverlay(dem25m.kml, "dem25m_c.kml", "dem25m_c.tif", name="Shaded relief in ILWIS")
# export of extracted channels to Google Earth:
proj4string(channels) <- CRS(MGI_Z6)
channels.ll <- spTransform(channels[3], CRS("+proj=longlat +datum=WGS84"))
writeOGR(channels.ll, "channels.kml", "channels", "KML")
# extract the drainage network in GRASS GIS:
library(spgrass6) # version => 0.6-1 (http://spatial.nhh.no/R/Devel/spgrass6_0.6-1.zip (71))
# Location of your GRASS installation:
loc <- initGRASS("C:/GRASS", home=tempdir())
loc
# Import the ArcInfo ASCII file to GRASS:
parseGRASS("r.in.gdal") # commmand description
execGRASS("r.in.gdal", flags="o", parameters=list(input="DEM25m.asc", output="DEM"))
execGRASS("g.region", parameters=list(rast="DEM"))
gmeta6()
# extract the drainage network:
execGRASS("r.watershed", flags=c("m", "overwrite"), parameters=list(elevation="DEM", stream="stream", threshold=as.integer(50)))
# thin the raster map so it can be converted to vectors:
execGRASS("r.thin", parameters=list(input="stream", output="streamt"))
# convert to vectors:
execGRASS("r.to.vect", parameters=list(input="streamt", output="streamt", feature="line"))
streamt <- readVECT6("streamt")
plot(streamt)
######## R script ###############

MORE READING:

  1. Bivand, R. 2005. Interfacing GRASS 6 and R. Status and development directions, GRASS Newsletter, 3, 11–16.
  2. Bivand, R., Pebesma, E., Rubio, V., 2008. Applied Spatial Data Analysis with R. Use R Series, p. 400. Springer, Heidelberg, pp. 378.
  3. Brenning, A. 2008. Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. In: J. Böhner, T. Blaschke & L. Montanarella (eds.), SAGA - Seconds Out (= Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 19), 23-32.
  4. Conrad, O. 2007. SAGA — Entwurf, Funktionsumfang und Anwendung eines Systems fur Automatisierte Geowissenschaftliche Analysen, Ph.D. thesis, University of Gottingen, Gottingen.
  5. Grohmann, C.H. 2004. Morphometric analysis in Geographic Information Systems: applications of free software GRASS and R. Computers & Geosciences, 30 (9-10):1055-1067.
  6. Hengl, T., 2009. A Practical Guide to Geostatistical Mapping. 2nd Ed, University of Amsterdam, 291 p.
  7. Neteler, M. and Mitasova, H. 2008. Open Source GIS: A GRASS GIS Approach, Springer, New York, 3rd edn.

Attachment:

SAGA_ILWIS_GRASS_0.zip

Book - Geomorphometry: Concepts, Software, Applications

A title in the Developments in Soil Science series volume 33. Read this book using the AmazonOnlineReader!

Table of content:

  • Foreword
  • **Part 1 **
  • 1. Geomorphometry: A Brief Guide
    1. Mathematical and Digital Models of the Land Surface
    1. DEM Production Methods and Sources
    1. Preparation of DEMs for Geomorphometric Analysis
    1. Geostatistical Simulation and Error Propagation in Geomorphometry
    1. Basic Land-Surface Parameters
    1. Land-Surface Parameters and Objects in Hydrology
    1. Land-Surface Parameters Specific to Topo-Climatology
    1. Landforms and Landform Elements in Geomorphometry
  • **Part 2 **
    1. Overview of Software Packages Used in Geomorphometry
    1. Geomorphometry in ESRI Packages
    1. Geomorphometry in SAGA
    1. Geomorphometry in ILWIS
    1. Geomorphometry in LandSerf
    1. Geomorphometry in MicroDEM
    1. Geomorphometry in TAS GIS
    1. Geomorphometry in GRASS GIS
    1. Geomorphometry in RiverTools
  • **Part 3 **
    1. Geomorphometry - A Key to Landscape Mapping and Modelling
    1. Soil Mapping Applications
    1. Vegetation Mapping Applications
    1. Applications in Geomorphology
    1. Modelling Mass Movements and Landslide Susceptibility
    1. Automated Predictive Mapping of Ecological Entities
    1. Geomorphometry and Spatial Hydrologic Modelling
    1. Applications in Meteorology
    1. Applications in Precision Agriculture
    1. The Future of Geomorphometry
  • Bibliography
  • Index
  • Colour Plate Section

How to cite?

The book can be cited as:

Hengl, T., Reuter, H.I. (eds) 2008. Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, vol. 33, Elsevier, 772 pp.

To refer to a specific chapter, please write e.g.:

Pike, R.J., Evans, I.S., Hengl, T., 2008. Geomorphometry: a Brief Guide. In: Hengl, T. and Reuter, H.I. (Eds), Geomorphometry: Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, vol. 33, Elsevier, 1-28 pp.

*Note that each specific chapter of the book has an unique DOI.

Specific chapter of the book can be obtained separately from the Elsevier’s ScienceDirect service.


How to obtain the data set?

The Baranja Hill data set used in this book can be obtained here. It comprises various data layers ranging from a TOPO DEM, SRTM DEM, original point measurements of heights, contour lines from the 1:25k and 1:5k scale topo-maps and various other thematic layers.


Attachment:

Pike_2008_Geomorphometry_ch1.pdf

Geomorphometry_bookflyer_Hengl.pdf

Latest Posts

ANADEM: A Digital Terrain Model for South America

There is a new paper (open access) describing a Machine Learning-based DTM for South America:

Laipelt L., Andrade B.C., Collischonn W., Teixeira A.A., Paiva R.C.D., Ruhoff A., 2024. ANADEM: A Digital Terrain Model for South America. Remote Sensing 16(13):2321. https://doi.org/10.3390/rs16132321

GRASS GIS 8.4.0RC1 release

The GRASS GIS 8.4.0RC1 release provides more than 515 improvements and fixes with respect to the release 8.3.2.

Check the full announcement at https://github.com/OSGeo/grass/releases/tag/8.4.0RC1.

Please support in testing this release candidate.

Best BiCubic Method to Compute the Planimetric Misregistration between Images with Sub-Pixel Accuracy: Application to Digital Elevation Models

There is a new paper (open access) describing a novel method to estimate sub-pixel planimetric displacements between two DEMs:

Riazanoff, S.; Corseaux, A.; Albinet, C.; Strobl, P.A.; López-Vázquez, C.; Guth, P.L.; Tadono, T. Best BiCubic Method to Compute the Planimetric Misregistration between Images with Sub-Pixel Accuracy: Application to Digital Elevation Models. ISPRS Int. J. Geo-Inf. 13, 96. https://doi.org/10.3390/ijgi13030096