ANADEM: A Digital Terrain Model for South America

Published: Jun 30, 2024 by C.H. Grohmann

There is a new paper (open access) describing a Machine Learning-based DTM for South America:

Laipelt L., Andrade B.C., Collischonn W., Teixeira A.A., Paiva R.C.D., Ruhoff A., 2024. ANADEM: A Digital Terrain Model for South America. Remote Sensing 16(13):2321. https://doi.org/10.3390/rs16132321

Paper abstract:
Digital elevation models (DEMs) have a wide range of applications and play a crucial role in many studies. Numerous public DEMs, frequently acquired using radar and optical satellite imagery, are currently available; however, DEM datasets tend to exhibit elevation values influenced by vegetation height and coverage, compromising the accuracy of models in representing terrain elevation. In this study, we developed a digital terrain model for South America using a novel methodology to remove vegetation bias in the Copernicus DEM GLO-30 (COPDEM) model using machine learning, Global Ecosystem Dynamics Investigation (GEDI) elevation data, and multispectral remote sensing products. Our results indicate considerable improvements compared to COPDEM in representing terrain elevation, reducing average errors (BIAS) from 9.6 m to 1.5 m. Furthermore, we evaluated our product (ANADEM) by comparison with other global DEMs, obtaining more accurate results for different conditions of vegetation fraction cover and land use. As a publicly available and open-source dataset, ANADEM will play a crucial role in advancing studies that demand accurate terrain elevation representations at large scales.

Data Access
ANADEM can be downloaded at https://hge-iph.github.io/anadem/ or accessed directly in GoogleEarth Engine (see instructions on the project link).

story srtm aster alos fabdem nasadem copdem copernicus demix dataset

Share

Latest Posts

ANADEM: A Digital Terrain Model for South America

There is a new paper (open access) describing a Machine Learning-based DTM for South America:

Laipelt L., Andrade B.C., Collischonn W., Teixeira A.A., Paiva R.C.D., Ruhoff A., 2024. ANADEM: A Digital Terrain Model for South America. Remote Sensing 16(13):2321. https://doi.org/10.3390/rs16132321

GRASS GIS 8.4.0RC1 release

The GRASS GIS 8.4.0RC1 release provides more than 515 improvements and fixes with respect to the release 8.3.2.

Check the full announcement at https://github.com/OSGeo/grass/releases/tag/8.4.0RC1.

Please support in testing this release candidate.

Best BiCubic Method to Compute the Planimetric Misregistration between Images with Sub-Pixel Accuracy: Application to Digital Elevation Models

There is a new paper (open access) describing a novel method to estimate sub-pixel planimetric displacements between two DEMs:

Riazanoff, S.; Corseaux, A.; Albinet, C.; Strobl, P.A.; López-Vázquez, C.; Guth, P.L.; Tadono, T. Best BiCubic Method to Compute the Planimetric Misregistration between Images with Sub-Pixel Accuracy: Application to Digital Elevation Models. ISPRS Int. J. Geo-Inf. 13, 96. https://doi.org/10.3390/ijgi13030096