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1. Introduction 
Specific catchment area is one of the key land-surface parameters used in the fields of 
hydrology, geomorphology, pedology and ecology and many methods have been 
devised to estimate it from grid DLSMs. An accurate reference is required to test these 
methods, but specific catchment area has only been determined analytically for simple 
surfaces such as inclined planes and cones. To assess the results on the complex 
surfaces of natural terrain developers and users have resorted to comparisons between 
the results from different methods and visual inspection of the patterns of estimated 
specific catchment area. 

This paper presents a differential equation that describes the rate of change of 
specific catchment area along a flow line. The equation can be solved numerically 
along a flow line that is derived numerically from a grid digital elevation model, 
allowing precise values of specific catchment area to be obtained at any location on a 
complex terrain surface.  

The development of the concepts and exploration of the results and implications are 
addressed in more detail in Gallant and Hutchinson, (in preparation). 

2. Stream Tubes and Specific Catchment Area  
Specific catchment area, contributing area (or total catchment area, TCA) and flow 
width are all defined in terms of a stream tube (Onstad and Brakensiek, 1968) 
consisting of two adjacent flow lines terminating at the downstream end on the 
opposite ends of a contour segment (Fig. 1). Specific catchment area a is defined as 
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where A is contributing area, the area of the stream tube, and w is the width of the 
lower end of the stream tube.  
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(a)               (b)  
Figure 1. (a) A stream tube of area A defined by a contour segment of length w.  

(b) A segment of stream tube showing change in contour length determined by contour 
line curvature. 

 
The area A at distance l from the hilltop is the integral of flow width w with respect 

to flow length: 
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or equivalently 

 w
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dA =  (3) 

Consideration of the geometry of a short segment of stream tube where the radius of 
curvature of the contour lines is rc leads to an expression for the rate of change of 
contour segment width w: 
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where 
c

c r
K

1=  is the plan curvature (or contour curvature), defined here to be positive 

for divergent regions (as shown in Fig. 1(b)) and negative for convergent regions. 

The equations for 
dl

dA
 and 

dl

dw
 allow a solution to the variation of specific 

catchment area a along a flow line starting from the definition of a at a point: 
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Equation 11 describes the rate of change of specific catchment area a along the flow 
path. It is a non-linear differential equation that can be integrated numerically along a 
flow path constructed starting from a hilltop with 0=a . Under suitable conditions it 
can be solved analytically, although most of the analytical results can be obtained more 
easily by solution from first principles. 

This equation has some interesting properties. The two terms on the right hand side 
relate to the two sources of change in specific catchment area: the constant term 
represents the increment due to increasing length of the flow line, while the second 
term captures the effects of convergence and divergence. In divergent terrain ( 0>cK ) 

the two terms compete and 
dl

da
 may increase or decrease along the flow path 

depending on the size of a and Kc. If 
cK

a
1=  the two terms balance exactly and 

specific catchment area remains constant along the flow path. In convergent terrain the 
two terms are both positive leading to an exponential increase in specific catchment 
area. 

The use of a single flow line to determine specific catchment area becomes 
untenable in strongly convergent areas and in channels, where total catchment area is a 
more relevant quantity, but the results of Equation 11 are applicable over most of the 
landscape. A robust method to determine where Equation 11 ceases to be applicable; 
the condition la 5>  is suggested in Gallant and Hutchinson (in preparation). 

3. Numerical Solution 
The solution of (11) on a grid DLSM requires: 

• an interpolation method to create a smooth surface so that first and second 
derivatives can be computed at any point 

• a method to construct flow lines on that surface 
• a method to integrate (11) along a flow line 

We use a biquadratic interpolation method (de Boor, 1978) to provide a continuous 
surface with continuous first derivatives. The flow lines are constructed as short 
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straight line segments using a midpoint method with adaptive step size. At the start of 
each step, the local flow direction (aspect) is determined using the first derivatives of 
the surface, a trial half-step is taken, the direction is re-computed at the half-step point 
then a full step is taken in that new direction. The step size is adjusted so that the 
directions at the beginning and end of each step are quite close (dot product of unit 
vectors is greater than 0.99).  

Integration of (11) is achieved by analytical solution for each segment of the flow 
line with appropriate assumptions on the variation of Kc along the segment. In most 
cases the form: 
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is used, yielding the solution: 
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provided 11 −≠c  and 01 ≠c  and that Kc does not change sign along the line segment. 
If any of those conditions are not satisfied, an alternate solution with constant Kc is 
used: 
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The integration commences at the top of the stream line with 0=a  and proceeds 
segment by segment to the end of the line. 

The accuracy of the numerical solution will depend on the accuracy with which the 
flow line is constructed and the accuracy of the integration of Equation 11 along the 
line. The choice of the interpolation method will also have an impact on the results, 
although this is more a matter of choice than accuracy. In our experiments, we have 
used conservative parameters for the construction of the line so that many short line 
segments are constructed and further refinement of the line does not produce 
noticeable changes to either the path of the line or the integration of Equation 11. 
Gallant and Hutchinson (in preparation) demonstrate that the numerical results are 
indistinguishable from full analytical solutions on surfaces where analytical solutions 
are available (planes and cones). 

4. Comparisons with Conventional Methods 
The most valuable application of Equation 11 is as a reference against which the 
approximate (and much more efficient) methods of calculating specific catchment area 
can be compared. Figure 2 shows a flow path and stream tube calculated from a 20 m 
resolution DLSM in the Brindabella Ranges near Canberra in southeastern Australia 
(35° 21′S 148° 49′E). Figure 3 shows specific catchment area calculated along the 
central flow line using Equation 11 along with estimates from the most commonly 
used conventional methods: D8 (O’Callaghan and Mark, 1984); slope-weighted 
multiple flow direction here referred to as M8 (Freeman, 1991; Quinn et al., 1991, 
1995); DEMON (Costa-Cabral and Burges, 1994); and D∞ (Tarboton, 1997). 
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Figure 2. Flow lines derived from a 20 m resolution DLSM 

 

 
Figure 3. Specific catchment area along the flow line of Figure 2 computed using 

Equation 11 and four conventional methods. 
 

Along the divergent ridgeline (flow length of 0 – 200 m) all the conventional 
methods over-estimate specific catchment area by about a factor of two. This is largely 
due to the way in which flow width is estimated in these methods; flow widths range 
from 1 to 1.414 times the cell size, whereas on a ridgeline flow leaves the cell over 
much of the perimeter of the cell.  

Along the planar hillslope (200 – 400 m) all methods perform quite well with D8 
giving the closest results to Equation 11. This result reflects the orientation of the flow 
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path in a cardinal direction, where the known deficiencies of the D8 method do not 
occur.  

Between 400 and 600 m the terrain is gently divergent then convergent. The D8 
method is unable to capture this subtle variation, M8 performs better but still poorly 
while DEMON and D∞ behave quite well. D∞ appears to best capture the decline in 
specific catchment area around 450 m. 

In the more convergent area beyond 600 m the result from Equation 11 increases 
exponentially, which is an unrealistic result that can be traced back to the assumption 
in Equation 1 that flow always responds to local curvature. 

5. Conclusions 
Equation 11 provides a method for accurately calculating specific catchment area at a 
specified point on a grid DEM without having to separately calculate catchment area 
and flow width. This method provides for the first time a means of testing approximate 
grid-based methods in complex terrain. A brief comparison with existing methods 
shows that the D∞ method best captures the variations in specific catchment area along 
the single flow line examined, although all methods over-estimate specific catchment 
area on divergent ridge lines. 
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