AUTOMATED **EXTRACTION OF AREAL EXTENTS** FOR GNIS SUMMIT **FEATURES USING THE EMINENCE-CORE METHOD** 







### SAMANTHA ARUNDEL

UGI

Center of Excellence for Geospatial Information Science (CEGIS)



#### GEO MORPHOMETRY 2021 PERUGIA, ITALY IGU

PARTNERS





SEPT 13 - 17 2021



| SCIENCE          | PRODUCT      |  |  |  |  |
|------------------|--------------|--|--|--|--|
| Topics, centers, | Maps, data,  |  |  |  |  |
| missions         | publications |  |  |  |  |

Releases, I'm a reporte

NEWS

Contact, chat, social media

CONNECT

ABOUT

Organization,

jobs, budget

Search

#### Center of Excellence for Geospatial Information Science (CEGIS)



#### HOME

3DEP FEATURE EXTRACTION AND CONFLATION

#### DATA INTEGRATION

HIGH-PERFORMANCE COMPUTING

GEOSPATIAL SEMANTICS AND ONTOLOGY

MULTISCALE REPRESENTATION

NATIONAL TERRAIN MAPPING

### National Terrain Mapping

The long-term objective of this research is to automatically extract and/or map terrain features for national mapping, and in so doing, set precedence for similar work in other subject matter realms.

The CEGIS 3DEP Initiative involves applications research projects, including pilots and test beds in areas such as the generation of derivative products from lidar that are National in scope, and creation of decision support systems with 3DEP and geospatial semantics. The modeling, identification, and extraction mechanisms for terrain features such as mountains, hills, and valleys are in part dependent on an understanding of their creation, on their morphometric properties such as shape and size, and on naïve perception of the physical landscape. Lidar data are being acquired as a part of the 3D Elevation Program (3DEP) and have sufficient resolution to capture the many and varied aspects of all types of terrain features. The ability to use these data as a source for extraction of geomorphologic and/or terrain features that can then be used to support spatial reasoning and natural language processing, and topographic science modeling and map generation, depends on a thorough understanding of both the features themselves and the everyday human conceptions of those features.

## **USGS GNIS: Mapping Toponyms**

Science for a changing world

SCIENCE Topics, centers, missions

PRODUCTS Maps, data, publications CONNECT Contact, chat, social media

ABOUT Organization, jobs, budget

Search

-

Mapping, Remote Sensing, and Geospatial Data

#### What is the Geographic Names Information System (GNIS)?

NEWS

Releases.

I'm a reporter

The <u>Geographic Names Information System</u> (GNIS) was developed by the U.S.Geological Survey (USGS) in cooperation with the U.S. Board on Geographic Names (BGN), which maintains cooperative working relationships with state names authorities to standardize geographic names. GNIS contains information about the official names for places, features, and areas in the 50 states, the District of Columbia, and the territories and outlying areas of the United States, including Antarctica. GNIS is the geographic names component of <u>The National Map</u>.

GNIS contains records on more than 2 million geographic names in the United States, including populated places, schools, lakes, streams, valleys, and ridges. It includes all feature types except for road and highway names.

Search the GNIS using its <u>Query Form for the United States and Its Territories</u>. A feature search on GNIS yields the longitude and latitude of the feature, the name of the topographic map on which the feature can be found, and feature information. There are also links to topographic maps as well as aerial photography via the National Map and other sources.

Learn more:

- Geographic Names Information Guide
- An Introduction to the United States Board on Geographic Names

#### **Explore More Science**

maps and atlases National Geographic Names Information System (GNIS) topographic maps Mapping, Remote Sensing, and Geospatial Data

## **USGS: The National Map**



https://apps.nationalmap.gov/viewer

# **GNIS Classes for Eminences**

| <b>GNIS TYPE</b> | DESCRIPTION                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Cliff            | Very steep or vertical slope<br>(bluff, crag, head, headland, nose, palisades, precipice,<br>promontory, rim, rimrock)                                                                                                                                                                                                     |  |  |  |  |  |
| Pillar           | Vertical, standing, often spire-shaped, natural rock formation<br>(chimney, monument, pinnacle, pohaku, rock tower)                                                                                                                                                                                                        |  |  |  |  |  |
| Range            | Chain of hills or mountains; a somewhat linear, complex<br>mountainous or hilly area (cordillera, sierra)                                                                                                                                                                                                                  |  |  |  |  |  |
| Ridge            | Elevation with a narrow, elongated crest which can be part of a<br>hill or mountain (crest, cuesta, escarpment, hogback, lae, rim,<br>spur)                                                                                                                                                                                |  |  |  |  |  |
| Summit           | Prominent elevation rising above the surrounding level of the<br>Earth's surface; does not include pillars, ridges, or ranges<br>(ahu, berg, bald, butte, cerro, colina, cone, cumbre, dome, head,<br>hill, horn, knob, knoll, mauna, mesa, mesita, mound, mount,<br>mountain, peak, puu, rock, sugarloaf, table, volcano) |  |  |  |  |  |

# **GNIS Eminence Type Counts**

| 1  | CLASS  | GENERIC   | EREO   |   | CLASS  | GENERIC   | EREO    |   | CLASS | GENERIC   | EREO   |
|----|--------|-----------|--------|---|--------|-----------|---------|---|-------|-----------|--------|
| 2  | Summit | MOUNTAIN  | 21 413 |   | Range  | MOUNTAINS | 893     | - | Ridge | RIDGE     | 12 525 |
| 3  | Summit | HILL      | 16,765 |   | Range  | HILLS     | 866     |   | Ridge | MOUNTAIN  | 482    |
| 4  | Summit | PEAK      | 7.042  |   | Range  | RANGE     | 405     |   | Ridge | DIVIDE    | 209    |
| 5  | Summit | BUTTE     | 3,914  |   | Range  | MOUNTAIN  | 82      | - | Ridge | HILL      | 181    |
| 6  | Summit | KNOB      | 3,774  |   | Range  | BUTTES    | 59      | _ | Ridge | POINT     | 163    |
| 7  | Summit | POINT     | 1,597  |   | Range  | BREAKS    | 14      | - | Ridge | SPUR      | 108    |
| 8  | Summit | MESA      | 1,380  |   | Range  | KNOBS     | 14      | - | Ridge | HILLS     | 97     |
| 9  | Summit | ROCK      | 1,179  |   | Ranne  | PEAKS     |         |   | Ridge | BACKBONE  | 97     |
| 10 | Summit | HILLS     | 636    |   | Range  | SISTERS   |         | - | Ridge | MOUNTAINS | 78     |
| 11 | Summit | TOP       | 601    |   | Pange  | RIDGE     | 8       |   | Ridge | HOGBACK   | 60     |
| 12 | Summit | KNOLL     | 512    |   | Nango  | RIDGE     |         | - | Ridge | LEAD      | 43     |
| 13 | Summit | MOUND     | 363    |   | Dillar | POCK      | 1 3 2 7 |   | Ridge | KNOBS     | 35     |
| 14 | Summit | BUTTES    | 358    | I | Dilloc | BOCKE     | 445     |   | Ridge | RIDGES    | 34     |
| 15 | Summit | PEAKS     | 298    |   | Pillar | RUUNS     | 115     | - | Ridge | RANGE     | 34     |
| 16 | Summit | DOME      | 232    |   | Pillar | PINNACLE  | 68      | - | Ridge | REEF      | 27     |
| 17 | Summit | HEAD      | 231    |   | Pillar | MONUMENT  | 50      | - | Ridge | CREST     | 24     |
| 18 | Summit | ROCKS     | 219    |   | Pillar | TOWER     | 34      | - | Ridge | BUTTE     | 20     |
| 19 | Summit | SUMMIT    | 190    |   | Pillar | PINNACLES | 18      |   | Ridge | RIM       | 18     |
| 20 | Summit | MOUNTAINS | 182    |   | Pillar | NEEDLES   | 15      |   | Ridge | WALL      | 17     |
| 21 | Summit | CONE      | 106    |   | Pillar | NEEDLE    | 15      | _ | Ridge | BACK      | 16     |
| 22 | Summit | KNOBS     | 101    |   | Pillar | PEAK      | 13      |   | Ridge | MORAINE   | 16     |
| 23 | Summit | KNOLLS    | 90     |   | Pillar | POINT     | 13      |   | Ridge | BUTTES    | 15     |
| 24 | Summit | TABLE     | 90     |   | Pillar | CASTLE    | 12      |   | Ridge | NARROWS   | 14     |
| 25 | Summit | RIDGE     | 81     |   | Pillar | SPIRE     | 12      |   | Ridge | ROCKS     | 13     |
| 26 | Summit | MOUNDS    | 57     |   | Pillar | CHIMNEYS  | 10      |   | Ridge | CLEAVER   | 12     |
| 27 | Summit | HUMP      | 48     |   | Pillar | CHIMNEY   | 9       |   | Ridge | MESA      | 12     |
| 28 | Summit | LOOKOUT   | 48     |   | Pillar | PILLAR    | 9       |   | Ridge | PEAKS     | 11     |
| 29 | Summit | ROUNDTOP  | 45     |   | Pillar | THUMB     | 8       | - | Ridge | BLUFF     | 10     |
| 30 | Summit | NIPPLE    | 42     |   | Pillar | CRAGS     | 8       |   | Ridge | ROCK      | 10     |
| 31 | Summit | TEMPLE    | 40     |   | Pillar | тоотн     | 6       | - | Ridge | ISLAND    | 8      |
| 32 | Summit | NEST      | 40     |   | Pillar | HEAD      | 6       | - | Ridge | ARM       | 8      |
|    |        |           |        |   |        |           | -       | - |       |           |        |



# **USGS GNIS: Mapping Toponyms**



State: Ohio

4

County:

#### Query Form For The Uni Feature Query Results

Feature Name:

#### Click the feature name for details and to access map services

Click any column name to sort the list ascending ▲ or descending ▼

| Evect Match | Feature Name  | ١D      | <u>Class</u> | <u>County</u> | <u>State</u> | <u>Latitude</u> | Longitude | Ele(ft*) | <u>Map**</u>  | BGN Date | Entry Date  |
|-------------|---------------|---------|--------------|---------------|--------------|-----------------|-----------|----------|---------------|----------|-------------|
|             | Acme Hill     | 1063506 | Summit       | Medina        | OH           | 410135N         | 0814756W  | 1214     | Seville       | -        | 01-OCT-1991 |
| Ohio        | Allen Knob    | 1048452 | Summit       | Fairfield     | OH           | 394133N         | 0823920W  | 1145     | Amanda        | -        | 12-JUL-1979 |
|             | Anstine Hill  | 1963544 | Summit       | Hardin        | OH           | 403531N         | 0835019W  | 1102     | Roundhead     | -        | 11-SEP-2002 |
| ~           | Asher Hill    | 1037515 | Summit       | Ross          | OH           | 391956N         | 0831455W  | 1283     | Bourneville   | -        | 12-JUL-1979 |
|             | Backus Knob   | 1056212 | Summit       | Tuscarawas    | OH           | 401636N         | 0813001W  | 1194     | Newcomerstown | -        | 12-JUL-1979 |
|             | Bacon Hill    | 1067182 | Summit       | Portage       | OH           | 410012N         | 0811728W  | 1217     | Suffield      | -        | 01-FEB-1992 |
|             | Bald Hill     | 1037589 | Summit       | Ross          | OH           | 392332N         | 0825602W  | 1250     | Kingston      | -        | 12-JUL-1979 |
|             | Bald Knob     | 1062578 | Summit       | Ashland       | OH           | 403916N         | 0821421W  | 1224     | Loudonville   | -        | 01-APR-1991 |
|             | Bald Knob     | 1048483 | Summit       | Ross          | OH           | 391506N         | 0831917W  | 1115     | South Salem   | -        | 12-JUL-1979 |
|             | Bald Knob     | 1048482 | Summit       | Pike          | OH           | 390154N         | 0830432W  | 1007     | Piketon       | -        | 12-JUL-1979 |
|             | Bald Knob     | 1061350 | Summit       | Licking       | OH           | 400204N         | 0822224W  | 1201     | Hanover       | -        | 12-JUL-1979 |
|             | Bald Knob     | 1060841 | Summit       | Licking       | OH           | 400640N         | 0821133W  | 1112     | Toboso        | -        | 12-JUL-1979 |
|             | Bald Knob     | 1048481 | Summit       | Logan         | OH           | 401726N         | 0834142W  | 1437     | Zanesfield    | -        | 12-JUL-1979 |
|             | Ball Knob     | 1037599 | Summit       | Ross          | OH           | 391314N         | 0830441W  | 1306     | Summithill    | -        | 12-JUL-1979 |
|             | Ballards Hill | 1067569 | Summit       | Geauga        | OH           | 413523N         | 0810835W  | 1230     | Chardon       | -        | 01-FEB-1992 |

row(s) 1 - 15 of 243 🗸

View & Print all Save as pipe "|" delimited file

#### Screenshot from <u>https://geonames.usgs.gov</u>

### **General Terrain Feature Extraction**

Weiss, (2001) & Jenness, J. (2006)

Wood, J. (1996)



# Wood's Morphometric Features

Wael Hassan (2020). Comparing Geomorphometric Pattern Recognition Methods for Semi-Automated Landform Mapping. MS Thesis, Department of Geography, Ohio University, USA.



### Geomorphons

Slope threshold 1 5 10 15 20 HAYSTACK HAYSTACK AYSTACK S x PLINY RANGE 11 HAYSTACK MOUNTAIN 10 × PLINY BANGE PLINY 21 MOUNTAIN MOUNTAIN (#cells 10 OUNTAN × PLINY 31 AYSTAC radius OUNTAL MOUNTAIN MOUNTAIN 10 × PLINY 41 earch HAYSTACK HAYSTACK AYSTAC OUNTAN 5 7 X PLINY S 41 2 e inn. 25 MOUNTAIN OUNTAIN TAYSIACK MOUNTAIN × 8 PLINY 51 *Outer* 15 5: HAYSTACK HAYSTACK × 61 HAYSTACK HAYSTACK 25 × 61 Valley Km Ridge 3.8 White Mountains, NH 10 5.7 Km Summit Km

Wael Hassan (2020). Comparing Geomorphometric Pattern Recognition Methods for Semi-Automated Landform Mapping. MS Thesis, Department of Geography, Ohio University, USA.



Wael Hassan (2020). Comparing Geomorphometric Pattern Recognition Methods for Semi-Automated Landform Mapping. MS Thesis, Department of Geography, Ohio University, USA.



### **GEOBIA Segmentation & Classification**



Arundel S.T., Sinha G. (2018). Validating the use of object-based image analysis to map commonly recognized landform features in the United States. Cartography and GIS, 46(5), 441-455. DOI: <u>10.1080/15230406.2018.1526652</u><sup>13</sup>

### **Hierarchical Integrated Reasoning**



## **Individual Feature Extraction**



## **Key Col & Prominence**



CONCEPTUAL DIAGRAM FOR ILLUSTRATING THE CORE AREA AND KEY COLS  $(C_2 - C_4)$  OF PEAKS  $(A_2 - A_4)$ . The highest peak  $A_1$ 's key col is beyond the area shown.

# **Prominence Filtering of Peaks**



(a) Prominence > 0 ft (893)



(b) Prominence > 1 ft (558)



(c) Prominence > 10 ft (325)



(d) Prominence > 50 ft (154)



(e) Prominence > 100 ft (92)



(f) Prominence > 200 ft (49)



(g) Prominence > 500 ft (16)



(h) Prominence > 1000 ft (5)

# **Snapping GNIS Summits to Peaks**



Source: Samantha T. Arundel & Gaurav Sinha (2020): Automated location correction and spot height generation for named summits in the coterminous United States.

International Journal of Digital Earth: <u>https://doi.org/10.1080/17538947.2020.1754936</u>

## **Manual vs. Automated Cores**



## **Manual vs. Automated Cores**



# **Small Eminences (Knob)**



# **Elongated Eminences (Ridges?)**



22

# **Quantitative Comparison**

| Property  | Statistic | Automated  | Manual    | Percent    |  |
|-----------|-----------|------------|-----------|------------|--|
|           |           | Core       | Polygon   | Difference |  |
|           | Min       | 603        | 11,281    | 1.4        |  |
| Area (m²) | Мах       | 17,276,850 | 9,795,338 | 74,863     |  |
|           | Mean      | 1,397,879  | 1,001,331 | 1,893      |  |
|           | Std. Dev  | 3,600,661  | 1,636,711 | 3,246      |  |
|           | Min       | 142        | 401       | 0.3        |  |
| Perimeter | Мах       | 101,708    | 18,192    | 1,733      |  |
| (m)       | Mean      | 9,233      | 3,497     | 123        |  |
|           | Std. Dev  | 17,406     | 3,246     | 253        |  |



## Summary...

- At least, one method to create individualized representations of culturally salient eminences (or a core footprint of their peaks)
- Other methods may be even better, we have not explored yet!
- Visual and geometric comparison of automated and manually delineated extents confirms that GNIS Summit feature class is a general category that includes a wide variety of eminences
- Mapping areal representations of the individual eminence features will reveal hitherto unknown information about the range of shapes and sizes of eminences, not just in the United States, but anywhere in the world.



Sinha G, Arundel S, Hahmann T, Stewart K, Usery EL, Mark DM (2018). The Landform Reference Ontology (LFRO): A foundation for exploring linguistic and geospatial conceptualization of landforms. GIScience 2018, LIPICS Vol. 114. DOI: <u>10.4230/LIPIcs.GISCIENCE.2018.59</u>

## Next Steps...

- Test other termination criteria instead of key col
- Test boundary contraction and morphological complexity
- > Further explore application of Wood's quadratic polynomial and geomorphon based terrain characterization
- Context and multi-parameter eminence-core mapping framework being developed
- > USGS exploring machine learning based workflow for automating feature footprint extraction for terrain features
- Landform Reference Ontology (LFRO) guided feature extraction for multiple types of landforms, not just eminences

### > ULTIMATE GOAL... Creating comprehensive opensource toolkit for extracting eminences!

AUTOMATED EXTRACTION OF AREAL EXTENTS FOR GNIS SUMMIT FEATURES USING THE EMINENCE-CORE METHOD





Center of Excellence for Geospatial Information Science (CEGIS)





## GEOMORPHOMETRY 2021 PERUGIA, ITALY

PARTNERS





SEPT 13 - 17 2021