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OBJECTIVE

CONVERT UAV-BASED LIDAR POINTS INTO GROUND ELEVATION, VEGETATION HEIGHT AND

VEGETATION DENSITY, WITHOUT THE SUPPORT OF ADDITIONAL DATASETS

METHOD

1. DEVELOP AN ALGORITHM THAT ESTIMATES THE LOCAL

SHAPE OF THE GROUND BY USING A REGRESSION

SURFACE FITTING THE MINIMUM GROUND ELEVATIONS

2. TRANSFORM THE POINT CLOUD USING THE

REGRESSION SURFACE, TO REMOVE THE INFLUENCE

OF THE GROUND SLOPE IN NON-FLAT AREAS

3. TRAIN AND TEST A GENETIC ALGORITHM USING LIDAR-,

RGB-, AND COUPLED LIDAR-RGB- BASED PREDICTORS

GROUND ELEVATION

VEGETATION HEIGHT 
AND DENSITY
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UAV BASED 
LIDAR POINT
CLOUD

Flight altitude:
~50 m

VELODYNE 16 

LIDAR SENSOR

DJI MATRICE

600 UAV

RGB IMAGES

• Flight altitude:
105 m above 
ground

• Image
footprint:
175 x 115 m²

• 80% overlap

REMOTE SENSING DATASETS

DJI PHANTOM 

4 PRO

GROUND CONTROL 
POINTS

• Wooden 30×30 cm2

square target 

• Placed on a 2-m-tall t-
post

• Painted with red and 
black paint

VEGETATION SURVEY

• 40×40 cm2 square plots 

• Uniformly distributed

• Vegetation height, 
vegetation density, 
ground elevation

DATABASE: 
27 GCPs

DATABASE: 
77 PLOTS



1. The point cloud is divided in (n,e) cells (PCn,e ) of dimensions 0.4 m × 0.4 m 

2. The elevation of the lowest point of the cloud in each (n,e) cell is defined

3. A least-squares regression surface is determined using the minimum points in the cells composing a STn,e

4. The vertical distances between the LiDAR points and the regression surface are calculated

5. A transformed point cloud is obtained for each STn,e stencil. The minimum of these distances (𝑧 𝑆𝑇𝑛,𝑒
𝑚𝑖𝑛 ) is 

identified

6. The relative elevation of each point of the transformed point cloud in STn,e with respect to 𝑧 𝑆𝑇𝑛,𝑒
𝑚𝑖𝑛 is calculated

POINT CLOUD TRANSFORMATION

STENCIL

CELL



WHY?



Linear regression is made between the measured and computed ground elevation

𝑧 = 𝑎 + 𝑏 ∙ 𝑧𝑚𝑒𝑡ℎ𝑜𝑑𝑛,𝑒
𝑚𝑖𝑛

𝑧𝑚𝑒𝑡ℎ𝑜𝑑𝑛,𝑒
𝑚𝑖𝑛 is considered as:

1. The minimum elevation of the non-transformed point cloud in STn,e

2. The minimum elevation of the point cloud transformed by using a
regression plane

3. The minimum elevation of the point cloud that is transformed by using a 
second-order polynomial regression instead of the planar regression

DATASETS
STn,e minimum Regression Plane Regression Polynomial Curve

RMSE [cm] MAE [cm] RMSE [cm] MAE [cm] RMSE [cm] MAE [cm]
Test Creeks+Marsh 7.8 4.7 5.9 4.2 9.7 7.1
Test Creeks 13.9 13.9 10.3 10.3 7.1 7.0
Test Marsh 7.2 5.2 5.8 4.2 9.6 7.0

LIDAR POINT CLOUD. Evaluation metrics for the ground elevation. 

BEST METHOD: PLANAR REGRESSION 𝒛 = −𝟎. 𝟎𝟏𝟖 + 𝒛𝒎𝒆𝒕𝒉𝒐𝒅𝒏,𝒆
𝒎𝒊𝒏

GROUND ELEVATION ESTIMATE



GENETIC ALGORITHM - MODEL PREDICTORS

Datasets LiDAR RGB

Variables

𝑀𝑛,𝑒 Number of points
𝑅𝑛,𝑒
𝑚𝑖𝑛, 𝑅𝑛,𝑒

𝑚𝑎𝑥, 𝑅𝑛,𝑒
𝑚𝑒𝑎𝑛 Red minimum, maximum and 

mean intensity valuesσ𝑛,𝑒 Elevation Std. Dev.

𝐺𝑛,𝑒 Elevation Skewness
𝐺𝑛,𝑒
𝑚𝑖𝑛, 𝐺𝑛,𝑒

𝑚𝑎𝑥, 𝐺𝑛,𝑒
𝑚𝑒𝑎𝑛 Green minimum, maximum and 

mean intensity values𝐾𝑛,𝑒 Elevation Kurtosis

𝑧𝑛,𝑒
𝑚𝑎𝑥 Maximum elevation

𝐵𝑛,𝑒
𝑚𝑖𝑛, 𝐵𝑛,𝑒

𝑚𝑎𝑥𝐵𝑛,𝑒
𝑚𝑒𝑎𝑛 Blue minimum, maximum and 

mean intensity values𝑧𝑛,𝑒
𝑚𝑒𝑎𝑛 Mean elevation

𝑧𝑛,𝑒
𝑚𝑜𝑑𝑒 Mode elevation 𝐺𝑅𝐴𝑌𝑛,𝑒

𝑚𝑖𝑛, 𝐺𝑅𝐴𝑌𝑛,𝑒
𝑚𝑎𝑥, 

𝐺𝑅𝐴𝑌𝑛,𝑒
𝑚𝑒𝑎𝑛

Grayscale minimum, maximum 
and mean intensity values𝑧𝑛,𝑒

𝑚𝑒𝑑𝑖𝑎𝑛 Median elevation

GENETIC ALGORITHM. Model predictors for the genetic algorithm used to determine vegetation height and density.

𝑃 =
𝑃 − ത𝑃

𝑆𝐷𝑃

STANDARDIZED 
MODEL PREDICTOR

PREDICTOR’S 
STANDARD DEVIATION

PREDICTOR’S MEAN

PREDICTOR ORIGINAL 
VALUE



TRAINING, VALIDATION AND TESTING

TRAINED AND VALIDATED USING A LOOCV

25% TEST75% CROSS-VALIDATION (T elements)

𝑀𝐴𝐸 =
σ𝑖=1
𝑁 𝑦𝑜 − 𝑦𝑝𝑟

𝑁 𝑅𝑀𝑆𝐸 =
σ𝑖=1
𝑁 𝑦𝑜 − 𝑦𝑝𝑟

2

𝑁

ERROR  EVALUATION

TRAIN THE MODEL 

USING T-1 DATA 
POINTS

VERIFY THE MODEL 

USING THE REMAINIG 
DATA POINT

AVERAGE 
PREDICTION ERROR 

REPEATED FOR ALL THE 
T PERMUTATIONS

TRAIN THE MODEL 

USING T DATA 
POINTS

VERIFY THE MODEL 

USING THE TEST 
DATASET

PREDICTION ERROR 



Input source Steps LOOCV RMSE [cm] MAE [cm]
LiDAR Test 17.5 12.6

Photogrammetry Test 38.1 31.1
LiDAR + RGB Test 14.0 10.0

VEGETATION HEIGHT. Evaluation metrics obtained from the training,
validation, and testing procedure of the genetic algorithm.

𝑩𝒏,𝒆 = ∆𝒛𝒏,𝒆 × 𝑽𝒏,𝒆
𝑫VEGETATION DENSITY. Evaluation metrics obtained from the validation and 

testing procedure for the genetic algorithm.

𝑽𝒏,𝒆
𝑯 = 𝟎. 𝟗𝟐 ෟ𝝈𝒏,𝒆,𝑳𝒊𝑫𝑨𝑹

𝑩𝐧,𝒆 = 𝟎. 𝟑𝟗 ෟ𝝈𝒏,𝒆,𝑳𝒊𝑫𝑨𝑹 +
𝒛𝒏,𝒆,𝑳𝒊𝑫𝑨𝑹

𝒎𝒆𝒅𝒊𝒂𝒏

VEGETATION PROPERTIES ESTIMATE

Input source Steps LOOCV RMSE [stems/m2] MAE [stems/m2]
LiDAR Test 9.4 6.9

Photogrammetry Test 16.6 12.7
LiDAR + RGB Test 9.4 6.9



HIGH RESOLUTION MAPS
𝑽𝒏,𝒆
𝑯 = 𝟎. 𝟗𝟐 ෞ𝝈𝒏,𝒆 𝑩𝟐,𝒏,𝒆 =

𝑽𝒏,𝒆
𝑫 × ∆𝒛𝒏,𝒆= 𝟎. 𝟑𝟗 ෟ𝝈𝒏,𝒆 +

𝒛𝒏,𝒆
𝒎𝒆𝒅𝒊𝒂𝒏𝒛 = −𝟎. 𝟎𝟏𝟖 + 𝒛𝒎𝒆𝒕𝒉𝒐𝒅𝒏,𝒆

𝒎𝒊𝒏



OBSERVATIONS

SPARTINA ALTERNIFLORA GROWS 
HIGH CLOSE TO THE CREEKS AND THE 

DUPLIN RIVER, IN CONJUNCTION 
WITH HIGH GROUND ELEVATION

THERE IS A PREFERENTIAL 
SEDIMENTATION PROCESS ON 

THE SW SIDE OF THE CHANNELS

VEGETATION HEIGHT 
PROGRESSIVELY DECREASE 
REACHING THE INNER PART 

OF THE MARSH

HIGH VEGETATION DENSITY WAS 
CALCULATED IN CONJUNCTION WITH 

SHORT AND MEDIUM CANOPY 
HEIGHT

LOW VEGETATION DENSITY WAS 
CALCULATED ON THE CREEKS LEVEES 
AND HEADS, IN CONJUNCTION WITH 

HIGH VEGETATION

FUNNEL-SHAPED AND 
LOW-VEGETATED 

CORRIDORS

GROUND ELEVATION VEGETATION HEIGHT VEGETATION DENSITY



ADVANTGES AND APPLICATIONS

• Understand the seasonal variation in vegetation features and 

distribution

• Quantify the effects of droughts on the vegetation

• Evaluate marsh vertical accretion due to organic and inorganic 

deposition

• Quantify the impact of extreme events such as hurricanes and 

storms on both vegetation and ground elevation

• Agricultural applications

• Describe ground elevation and vegetation 

characteristics in other coastal features, such as dunes

• Obtain the vegetation parameters to use in the 

numerical models, favoring their calibration



• OUR APPROACH REDUCES THE ERROR INTRODUCED BY NON-FLAT GROUND IN THE 

COMPUTATION OF VEGETATION CHARACTERISTICS AND GROUND LEVEL, THUS

CAPTURING THEIR LARGE GRADIENTS IN THE PROXIMITY OF TIDAL CREEKS

• VEGETATION PATTERNS AND EVOLUTION CAN BE ANALYZED USING OUR METHOD

• LIDAR-DERIVED PREDICTORS HAVE LARGER PREDICTIVE ABILITIES THAN RGB-BASED 

PREDICTORS IN DESCRIBING VEGETATION HEIGHT AND DENSITY

• USING A COUPLED LIDAR-RGB DATASET PROVIDES LITTLE OR NO IMPROVEMENT IN 

COMPARISON WITH USING ONLY THE LIDAR DATASET

CONCLUSIONS
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