Geomorphometry 2021

Detection of crevasses using highresolution digital elevation models: Comparison of geomorphometric modeling and texture analysis

Olga Ishalina¹ olya-ishalina@yandex.ru Dmitrii Bliakharskii¹ Igor Florinsky²

^{3. КЕЛДЫША}¹ Department of Cartography and Geoinformatics Institute of Earth Sciences, St. Petersburg University St. Petersburg, Russia ² Institute of Mathematical Problems of Biology Keldysh Institute of Applied Mathematics, Russian Academy of Sciences Pushchino, Russia

> Perugia, Italy September 13-17 2021

Glacier crevasses

fractures or cracks in glaciers and ice sheets

a few meters to thousands of meters long a few millimeters to several meters wide

Approaches

ground-based

geophysical method

remote sensing

airborne imagery satellite imagery unmanned aerial surveys

Unmanned aerial survey

geomorhometric modeling Haralick texture analysis

Study area

Larsemann Hills, East Antarctica length ~30 km width ~3 km December 2016 – February 2017 Geoscan 201 Geodesy

orthomosaics resolution – 0.08 m DEMs resolution – 0.25 , 0.5 and 1 m

> 15 test crevasses width 0.5 m – 10 m length 50 m – 800 m

Bliakharskii, D. P., Florinsky, I. V., & Skrypitsyna, T. N. (2019). Modelling glacier topography in Antarctica using unmanned aerial survey: Assessment of opportunities. 5 International Journal of Remote Sensing, 40, 2517–2541

Geomorphometric modeling

crevasses No 6,7 resolution 1 m

orthomosaic

6

Geomorphometric modeling

7

crevasses No 10,11,12

resolution 0.25, 0.5, 1 m

horizontal curvature

Haralick texture features

Inverse Difference 0° Moment (IDM)

Crevasses No6,7 moving window 3x3 256 grey levels distance 1 pixel all directions 135° 90° 45° 8 ∩° 3 90°

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. *IEEE Transactions on Systems, Man, and Cybernetics, SMC-3*, 610–621⁸

135°

Comparison

Crev asse	Horizontal curvature	Inverse Difference Moment
1	+	
2	+	+
3	+	+
4	+	+
5	+	+
6		+
7	+	+
8		
9		
10	+	+
11	+	+
12		+
13		
14		
15		+

probability

horizontal curvature 0.67

width from 3 m or length from 500 m

Inverse Difference Moment 0.83

width 2-3 pixels

both 0.91

New crevasses

18 crevasses

length 80 m - 1000 m

> width 10 m

microtopographic feature

Hill shading

45° 135° 100 m

crevasses №29-32

solar elevation 40 °

Results

implementation of the approach to detection crevasses 18 new crevasses probability 0.91 horizontal curvature Inverse Different Moment

further work

- crevasse as microtophographic form
 - DEM filtering, smoothing
- intepretation Haralick texture feature

Thank you for attention!