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Abstract—A new approach to detecting craters based on DEM is 

proposed. Main difference between the proposed approach and 

existing approaches is the use of geomorphometric information 

with existing crater map through machine learning, while existing 

approaches mainly consider shape information of craters and 

ignore spatial structural information of crater interior. The 

proposed approach includes two stages: 1) to use existing crater 

map to train a random forest classifier based on multi-scale 

landform element information, which is then applied to extracting 

crater candidates; and 2) to use radial topographic profiles of 

craters on the map to train the other random forest classifier, 

which is then used to identify how likely each candidate extracted 

in the first stage is crater. Experimental result of the case study was 

quantitatively evaluated, compared with that from a representative 

of existing approaches. 

I. BACKGROUND 

Detecting craters is important for not only scientific aims 
(such as inferences about the ages and history of planets’ 
surfaces), but also engineering applications (such as spacecraft 
landing and working). Because manual delineation of craters is 
too inefficient to fit the actual applications, automatic (or semi-
automatic) approaches of detecting craters are needed. 

Existing automatic (or semi-automatic) crater detection 
approaches (CDAs) can be classified as two main types 
according to the type of main data source used, i.e. image-
analysis-based CDAs and terrain-analysis-based CDAs. Image-
analysis-based CDAs detect craters based on their optical features 
or highlight-shadow patterns recorded on remote sensing images, 
especially on grayscale photographs [1-3]. These features and 
patterns are mainly originated from the change of light and shade 
due to craters’ rims. However the terrain information, which is 

key to identifying geomorphic objects, cannot be directly 
contained in images and thus is considerately ignored in these 
CDAs.  

Terrain-analysis-based CDAs, which are based on digital 
elevation model (DEM), could use all kinds of terrain 
information to detect craters, thus have advantages over the 
image-analysis-based CDAs [4]. Current terrain-analysis-based 
CDAs often conduct a depression-filling process on DEM to 
extract round and symmetric boundaries (i.e., possible rims) of 
crater candidates [4-7]. Then craters are identified among these 
candidates by morphometric analysis or a machine learning 
classifier (e.g., C4.5) which is trained based on experts’ labeled 
craters depicted by morphologic attributes (such as diameter, 
roundness, and depth ) [4]. These CDAs mainly consider the 
morphometric information of craters (sometimes only shapes of 
crater boundaries) and ignore the spatial structure inside crater. 
This situation means the limited ability to detect complex craters 
which might be overlapped and degraded. 

This study proposes a new terrain-analysis-based CDA which 
use geomorphometric information with existing crater map 
through machine learning, so to effectively consider spatial 
structural information of crater interior during crater detection. 

II. METHOD 

Existing crater map (for part area or adjacent area of the 
working region of crater detection) implicitly contains domain 
knowledge on identifying crater which could be applied to the 
working region. This map can provide plenty of available 
samples to train machine learning classifier for CDA, which is 
more efficient and automatic than the conventional way of 
manual sample collection or manual rule assignment for classifier. 
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Furthermore, geomorphometric information derived from DEM 
can depict crater from not only morphologic (as the situation in 
existing CDAs) but also spatial structural perspectives, which 
could be used as features for machine learning. Above basic idea 
directs the design of the proposed approach in this study. 

Similar to existing CDAs, the proposed approach also 
includes two stages (Fig. 1) to fulfill two tasks respectively, i.e. 
extracting crater candidates, and identifying craters among 
candidates. 
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Figure 1.  Workflow of the proposed approach 

A. Stage 1: extracting crater candidates 

Note that the depression-filling way often used for extracting 
crater candidates in existing CDAs ignores the spatial structural 
information of crater interiors and might not work for those 
overlapped and/or degraded craters. In this stage we use a 
machine learning method (i.e., the random forest, RF for short) to 
extract possible cells. Samples for training a RF classifier are 
directly collected from existing crater map. Positive samples are 
cells within craters on the map, while negative samples are the 
cells selected outside craters.  

Feature selection is key to RF training. From the 
geomorphometric perspective, craters normally show a center-

periphery structure with lower, wider flat interior (with uplifted 
center sometimes) surrounded by a higher, narrower rim with a 
larger slope. The terrain of a cell inside crater, together with its 
surrounding area, often shows characteristic convexity-concavity 
variation across different analysis scales (i.e., size of analysis 
window). Due to the local variation in DEM, the topographic 
attributes (e.g., slope gradient, curvature, and so on) or landform 
element type derived normally at a specific analysis scale cannot 
depict this characteristic well. In this stage the features for RF 
input are selected to be the multi-scale landform element [8] 
which is proposed to revise the Geomorphons method [9] across 
a series of analysis scale [8]. 

After trained with multi-scale landform element information 
on samples from existing crater map, the RF classifier is used to 
extract crater candidate cells in the application area. Then a 
clustering process is conducted on these crater candidate cells to 
form crater candidates (i.e., boundaries of individual craters). 

B. Stage 2: identifying craters among candidates 

Note that the center-periphery structure of craters can be 
depicted typically with radial topographic profiles. In this stage 
the other RF classifier is trained with radial topographic profile 
samples collected based on existing crater map. Positive samples 
for training this RF classifier are radial topographic profiles 
originated from the centers of circular craters on the map, while 
negative samples are those randomly selected outside the craters. 
For each radial topographic profile sample, the features as RF 
input are organized as a 1×10 vector with each feature recording 
a normalized elevation value in order along the profile. 

After trained with radial topographic profile samples based on 
existing crater map, this RF classifier can be used to identify how 
likely each candidate extracted in the first stage is crater. A crater 
candidate will be identified to be crater when this crater candidate 
has a large enough count of radial topographic profiles classified 
to be crater’s profiles by the trained RF. 

III. EXPERIMENT 

A. Study areas and data 

LOLA (Lunar Orbiter Laser Altimeter) [10] compiled by 
experts was adopted as the crater map for training the proposed 
approach, as well as evaluation data. Lunar DEM with a 
resolution of 500 m from the Chang’E-1 satellite [11] was used in 
this experiment. 

Both training area and application area are in middle and 
lower latitude on the lunar farside (Fig. 2). The training area 
(160.0ºW~149.5°W, 28.8°N~36.9°N) is about 7.8×104 km2, and 
the application area (107.4ºE~133.8ºE, 13.6ºN~33.3ºN) is about 
4.8×105 km2 (Fig. 2). 
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c) 

Figure 2.  Study area maps: a) location map; b) training area; c) application area. 

B. Application of the proposed approach 

For the first stage of the proposed approach, the analysis 
scales (i.e., the radii of circular analysis window) for deriving 
multi-scale landform element information were set to be from 3 
km to 60 km with a step of 1 km. Thus the features for each cell 
being input RF are organized as a 1×58 vector with each feature 
recording a landform element type identified at the corresponding 
analysis scale. During training the RF for each stage of the 
proposed approach, the maximum of iterations was set to be 200. 
For creating crater candidates from crater candidate cells, 
DBSCAN algorithm was performed with a neighborhood 
searching radius of 2.5 km (i.e., 5 cells) and a minimum of 10 
neighboring crater candidate cells for valid clusters. 

In the second stage of the proposed approach, 12 radial 
topographic profiles (starting from due north with a step of 30º) 
created from each crater and crater candidate were input the RF 
during training and applying, respectively. The proposed 
approach identified a crater candidate to be a crater when more 
than half of the 12 radial topographic profiles of the crater 
candidate were classified as radial topographic profiles of a crater 
by the trained RF. 

C. Evaluation method 

Compared with the AutoCrat approach [4], the proposed 
approach was evaluated based on the LOLA crater map in the 
application area. Whether a crater ‘P’ identified by the proposed 
approach matches a crater ‘T’ on LOLA map was judged based 
on whether the ratio of the intersection area to the union area 
between P and T is larger than a preset C_threshold value 
(0.3~0.7 tested in this experiment). 

D. Experimental results and discussion 

In the application area which has 92 craters according to 
LOLA, the proposed approach and AutoCrat extracted 99 and 83 
craters, respectively (Fig. 3; Table 1). When C_threshold=0.5, a 
total of 63 craters identified by the proposed approach matched 
craters in LOLA, while this number for AutoCrat was 49. When 
40 craters in LOLA were consistently identified by both 
approaches, 23 and 9 craters in LOLA were identified only by the 
proposed approach and AutoCrat, respectively. This shows that 
the proposed approach performed better than AutoCrat. For other 
C_threshold values tested, there are similar situation which the 
proposed approach performed well (Table 1). The count of 
identified craters which were totally nonoverlapping with the 
craters in LOLA was 17 for the proposed approach and 22 for 
AutoCrat. Some of them might be craters missed in LOLA, 
which requires further analysis. 
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Figure 3.  Craters identified by the proposed approach in the application area.  

TABLE I.  MATCH BETWEEN CRATERS IDENTIFIED BY THE PROPOSED 

APPROACH AND CRATERS IN LOLA IN THE APPLICATION AREA, COMPARED WITH 

THE RESULTS FROM AUTOCRAT 

C_threshold 
The proposed approach AutoCrat 

Match Mismatch Match Mismatch 

0.7 43 56 37 46 

0.6 57* 42 44 39 

0.5 63* 36 49 34 

0.4 69* 30 49 34 

0.3 73* 26 51 32 
*: The proposed approach performed better than AutoCrat, with a very 

significant level (P<0.01). 

IV. SUMMARY 

Combining random forest with existing crater map and 
geomorphometric information, the proposed approach can 
effectively consider spatial structural information of crater 
interior during crater detection. 

The performance of the proposed approach will be further 
investigated, so to explore potential improvement on both the 
design of the proposed approach and its parameter-settings. 

The design of the proposed approach provides an example of 
the mining and use of the domain knowledge implicitly contained 
in an existing geomorphic type map through machine learning 
with geomorphometric information (not only morphologic 
information but also spatial structural information). This could be 

potentially useful for the design of approach to extracting other 
geomorphologic types (such as volcanos, river terraces, and 
alluvial fans), especially in regions where have been only partly 
mapped by experts. 
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