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Abstract— Geomorphological features, in general, and landslides, in 

particular, come on different sizes and shapes. However, the land-

surface variables (LSVs) that are used to describe them are often 

employed at a unique scale, as resulted from derivation in a standard 

3×3 moving window. In this paper we test the hypothesis that 

identification of landslide scarps improves when individual LSVs are 

calibrated to scale. For this purpose, we set up an experimental 

design, which was run in two topographically different locations: 

Shizuoka Prefecture, Japan and Buzau County, Romania. The 

experiment includes two steps: i) finding the scale at which each LSV 

achieves the best prediction of the scarps, and ii) comparing the 

modeling results of the scaled LSVs against LSVs at the default scale. 

In the first step, each LSV is up-scaled using focal mean statistics in 

a steadily increasing moving window, which starts at 3×3 and grows 

until the respective LSV achieves the maximum degree of fitting with 

the scarps. The degree of fitting is determined with logistic 

regression. In the second step, the LSVs at the calibrated scales are 

used as the input data for a random forest (RF) model. The RF model 

was ran with the same settings on the default LSVs (i.e. derived in a 

3×3 window) as well, for comparison. The results show a consistent 

increase in the AUC score when LSVs where calibrated to scale, as 

compared to the modeling with the default LSVs, from 80.31 to 91.54 

in the first study area, and from 74.62 to 83.11 in the second one. The 

results also show that each predictor operates at its specific scale; 

therefore a single ‘optimal’ scale does not apply for all LSVs. 

I.  INTRODUCTION  

The main issue in modeling landslides (identification, 
mapping, susceptibility and hazard evaluation) is related to their 
large diversity in shape, frequency and magnitude, due to 
predisposing (e.g. topographic conditions), preparing (ex. land 
cover changes) and triggering factors (e.g. precipitation or 
earthquakes). In order to address this issue, the input data in the 
models have to be adaptable enough to work on different types of 
landslides. It is acknowledged that serious obstacles on the way to 
perform/obtain better models are: the insufficient pre-processing 
of the input variables in respect to the sampling strategy, the spatial 
distribution, size and split of the data, and scale of the predictors 
[1].  

The existing work on evaluating the impact of scale of the 
predictors has been carried out for modeling landslide 
susceptibility. It has been previously shown that the scale of the 
analysis should be chosen based on the average size of the 
landslides [2], while [1] found that scaling the predictors improves 
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the global models of susceptibility mapping. Reference [3] further 
showed that predictors at different optimum scales perform better 
than a single-scale modeling. While the calibration of the 
predictors to scale is expected to improve landslide identification 
as well, this has not been proved yet. 

In the present study, we test if, and to which degree, calibration 
to scale of the individual predictors improves the results of 
identifying landslide scarps procedures.  

II. METHODOLOGY 

A. Study area 

The first study (Figure 1) area is located in the Shizuoka 
Prefecture, in the SE of Honshu Island, Japan. The existing data 
consists of a LiDAR – based DEM at 5 m spatial resolution, and 
an inventory of 117 landslide scarps. The scarps in this area are 
mostly covered by forest. 

The second study area (Figure 1) is located in the Buzau 
County, Romania. It stretches over two distinct relief and 
geological units, the Carpathian Mountains and the Subcarpathian 
hills. The existing data consist of a DEM with a spatial resolution 
of 4 m, and an inventory of 630 scarps. 

The landslide scarps from the two study areas show significant 
differences in size (Figure 2). The average area of the landslide 
scarp in the Buzau County study site is 8.64ha and the median size 
is 4.28ha, while the mean size of the landslide scarps in Shizuoka 
Prefecture study site is 2.35ha and the median value is 1.44ha 

 

Figure 2. The area of landslide scarps in the two study sites. Boxplots represent 

25-75% of values, whiskers represent 10-90% of values and the line within the 
box represents the median. Extreme values were omitted. 

B. Predictors 

For this test we use 13 land-surface variables (LSVs) as 

predictors (TABLE 1), which past studies have found useful in 

landslide modeling [4], [5] and [6]. The LSVs are extracted from 

the available DEMs using the System for Automated 

Geoscientific Analyses – SAGA [7]. The values of these 

predictors are associated with one randomly sampled point per 

scarp, as well as an equivalent number of randomly sampled non-

scarp points. 

C. Scaling the LSVs 

In order to find the optimal scale for modeling, each LSV is re-
scaled to successively broader representations of topography with 
focal mean statistics in increasing windows, starting from 3×3 [8]. 
A simple binary logistic regression is computed [4], where each 
LSV predicts scarp presence/absence as dependent variable. At 
each scale, the goodness of fit is evaluated using AUC (area under 
the curve). The process stops when the first highest AUC value is 
found. 

D. Modelling the landslide scarps 

The modeling is performed using the package “randomForest” 
[9] in the R software [10], with the settings ntree = 501 and mtry 
= 3 (number of trees and number of candidate variables, 
respectively). The results of 25 runs are evaluated using the AUC. 
Random forest (RF) is preferred because it is relatively easy to use, 
computationally efficient and produces models with a high level 
of accuracy.  

Figure 1. The two landslide scarps inventories and their location 
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Figure 3. A schematic representation of the methodology 

In order to assess the impact of scaling the predictors in 
modeling, two models are produced: one that uses the scaled LSVs 
as input data, while the other uses the default LSVs, for 
comparison (Figure 3). The latter is considered the benchmark in 
evaluation of the scaling performance. 

III. RESULTS 

A. Scaling the LSVs 

Ten out of the thirteen LSVs were scaled, and three (altitude, 
total catchment area and topographic wetness index) were only 
employed in modelling the landslide scarps as they are known to 
be insensitive to scale.  

TABLE 1. CALIBRATED SCALES OF LAND SURFACE VARIABLES 

 Land-surface variables Shizuoka Buzau 

Altitude default - 0.642a default - 0.599 

Aspect default - 0.606 5×5  - 0.62 (0.513) 

Convergence index 9×9 - 0.567 (0.542) b 9×9  - 0.614 (0.506) 

Curvature plan 9×9 - 0.567 (0.542) 5×5  - 0.608 (0.539) 

Curvature profile 9×9 - 0.528 (0.513) 9×9 - 0.618 (0.513) 

Curvature  7×7 - 0.59 (0.513) 9×9 - 0.615 (0.522) 

Flow direction default - 0.543 5×5  - 0.574 (0.545) 

Hillshade 5×5 - 0.541 (0.531) 5×5  - 0.588 (0.568) 

LS factor 5×5  - 0.6 (0.541) default - 0.565 

Slope 5×5  - 0.663 (0.525) 5×5  - 0.674 (0.524) 

Surface roughness default - 0.728 5×5  - 0.574 (0.548) 

Total catchment area default - 0.582 default - 0.53 

Topographic wetness index default - 0.557 default - 0.558 

a The table shows the scales (window size to compute focal mean statistics) at 

which individual LSVs maximize the prediction of landslide scarps and their 

AUC values. b AUC values of the LSVs at default scale are given within the 
brackets for comparison. 

 

Figure 4. An example of a scaled predictor in relation to a landslide scarp. Left 

image: plan curvature at the default scale. Right image: plan curvature scaled in 

a 9×9 window. Note a north-south trench inside the landslide scarp on the left 
image that is filtered out on the right image. 

    LSVs calibrated to scale predict better the scarp 

presence/absence in seven out of ten cases for the first study area, 

and in nine out of ten cases for the second study area, respectively. 

The size of the moving window at which LSVs were rescaled vary 

between 5×5 and 9×9 for both study sites, and four out of ten 

predictors were found to perform best at the same scale in both 

sites (TABLE 1). This reinforces the hypothesis that there is no 

universal scale that works for all the LSVs, but rather each LSV 

performs best at its own scale, confirming the similar results 

found by [3].  

However, more work is needed to research by how much the 

scale sensitivity analysis of individual LSVs outperforms the 

scale sensitivity on global models with all the LSVs at the same 

scale and if the results will justify the effort of performing another 

computational step. 

Considering that the scales of the LSVs from the two study 

areas are relatively similar while the size of the landslides scarps 

differs significantly, it can be suggested that the scale of the LSVs 

is not straightforwardly related to the size of the landslide scarps. 

The improvement of modeling seems to be rather due to a better 

representation of topography through elimination of local noise 

(micro-topography) (Figure 3). 

B. Modelling the landslide scarps 

The results show an improvement in the overall AUC score of 
the modeling, when using the scaled input data, from 80.31 to 
91.54 for the first study area and from 74.62 to 83.11 for the second 
one. 
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IV. CONCLUSIONS 

The results show, in both study areas, that calibration of LSVs 

to scale improves modeling of landslide scarps. These results 

confirm the previous findings of [1] and [3] that the scale of the 

input predictors is an important factor and should be considered 

when modeling landslides. This work is relevant to increase the 

accuracy of landslide scarp identification, within the context of 

automating the inventory mapping.  
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