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Abstract—GIScience has long been dominated by the naturalistic 

and scientistic ontological constraints championed by Willard Van 

Orman Quine. This has relegated dust storms and even mountains 

to the so-called slum of possibles that Quine had sought to clear in 

favor of a more aesthetic desert landscape. Paradoxically, 

mountains and dust storms often are real constituents of Earth’s 

deserts and semi-arid regions. The New Mexico Department of 

Health (NMDOH) is studying air quality and its impact on human 

health in the U.S.-Mexico border region. Emissions of fine 

particulate matter (PM10) from the Pleistocene pluvial Lake 

Palomas basin in the Chihuahuan Desert are a primary concern. 

Through Graham Harman’s object-oriented philosophy and 

rejection of the abiotic and biotic as ontologically distinct realms, 

“species” distribution models (SDMs) generated in Maxent become 

possible with just a small number of dust source presences located 

in MODIS visible band imagery. The first models from 2013 used 

multiple geoecologically relevant terrain objects to replace the 

geographically uncertain point sources. Although the terrain 

objects had been segmented with eCognition
®
 from only two of the 

three ASTER GDEM parameters used, the early SDMs 

nevertheless suggested that dust storms are accessible on 

geomorphometric terms alone. Wind directions were derived in 

2014 using dust plume image objects segmented from the MODIS 

thermal band translations of three dust storms. Three ‘wind-

related terrain attributes’ were then generated for each storm in 

Whitebox GAT from the SRTM DEM to complement the new 

SRTM terrain objects. When comparably biased multi-object 

“background data” also replace the 10,000 pixel-level background 

samples in Maxent, the model AUCs decrease expectedly but still 

remain high enough for the SDMs to be potentially useful. The 

probability distributions are now “projected” over the same extents 

to the successively lower object and pixel levels in this novel and 

geographically scalar approach. 

I.  INTRODUCTION AND BACKGROUND 

Dust storms and the emissions of fine particulate matter 

(PM10), airborne particles with aerodynamic diameters less than 

10.0 µm, have been studied across many of Earth’s endorheic 

basins and dry plains. Most of the studies oriented towards the 

sources of PM10 have typically focused on geomorphological 

settings, soil types, anthropogenic factors, land cover, climatic 

and meteorological drivers of atmospheric dust loading or, in 

some cases, the discernment of dust plumes in satellite imagery. 

In addition, some recent studies have turned to the sub-basin 

scale and even include attempts at locating individual dust 

sources in MODIS imagery [1], [2]. However, until now, none 

has approached dust storms as unified and ephemeral objects 

with component parts in a geomorphometric and geoecological 

context. 

The development of an object-oriented maximum entropy 

approach for modeling dust source suitability distributions began 

in 2013 as an attempt to utilize what was previously done by [1] 

and [3]. [1] located close to 150 individual dust sources from the 

distinct plumes visible in the U.S.-Mexico border region and on 

the U.S. southern High Plains in a “true color” enhancement of 

the MODIS translation of the 15 December 2003 dust storm. [3] 

developed a method for locating dust sources in NOAA GOES 

and POES satellite imagery that translated five synoptically-

forced dust storms in the border region during 2002 and 2003. Of 

the five dust storms in [3], only three have samples with at least 

15 presences located in the higher spatial resolution NOAA 

POES AVHRR imagery to take advantage of the ‘hinge features’ 

in the presence-only maximum entropy modeling software 

known as Maxent [4]. As was expected, the preliminary model 

that used the MODIS presences from the border region in [1] 

outperformed those using the far more geographically uncertain 

AVHRR presences from [3]. 

Species distribution models (SDMs) are important for 

determining the distribution of suitable conditions for a species 

or, in this case, objects. Geographic bias in sampling can be 

especially problematic for presence-only or presence-background 

Jackson

In: Geomorphometry for Geosciences, Jasiewicz J., Zwoliński Zb., Mitasova H., Hengl T. (eds), 2015.  Adam Mickiewicz University in Poznań 

- Institute of Geoecology and Geoinformation, International Society for Geomorphometry, Poznań



162

Geomorphometry.org/2015   

models [4], [5]. Sampling satellite imagery for dust source 

occurrences has its own peculiar forms of bias associated with it. 

First, because discovery is constrained by the spatial resolutions 

of the imagery, we cannot say that there are, in fact, any true 

absences. Second, the dust plumes can sometimes obscure 

additional underlying sources and plumes [1] resulting in an 

upwind concentration at or near the ‘plume head’ [2]. Third, the 

object-oriented ontology used here for replacing the 

geographically uncertain point sources introduces a new bias and 

its own subsequently novel and geographically scalar solution. 

One consequence of the anti-object-oriented naturalism and 

ontological scientism established by [6] and endorsed by [7] is 

the reduction of geomorphometric data to “ancillary” status in 

service to a more primary optical remote sensing. Despite the 

many object-based and object-oriented approaches and some 

noteworthy attempts to unify them with field-based models, none 

have been object-oriented in the ontological sense. That is, 

entities, objects and fields are typically either reduced downward 

to supposedly more fundamental elements or processes or 

reduced upward to events, appearances, aggregates, bundles of 

qualities, effects or relations [8], [9]. Contra anthropocentric 

philosophy, all forms of access are indirect and take place on the 

interior of a containing relation-object [10]. Not even mountains 

are reducible to mere conceptualizations or specific aggregates of 

molecules, as they are for [11], but are indeterminate and real 

objects in their own right that remain susceptible to translation by 

humans, glaciers, air parcels and the asthenosphere. 

II. METHODS AND MATERIALS  

A. Terrain attributes 

A 3-arc-second CGIAR-CSI post-processed Shuttle Radar 

Topography Mission (SRTM) DEM mosaic was projected in the 

UTM projection with a 90 meter spatial resolution and filtered in 

Whitebox GAT. Two geoecologically relevant terrain attributes 

were generated in Whitebox GAT for use in Maxent along with 

elevation. The first is the statistical parameter measuring local 

vertical complexity in the DEM generated with a three by three 

neighborhood application of the ‘standard deviation filter’ [12], 

[13]. It is referred to here as ‘local variability’ (LV). [14] used 

‘local variance’ (also LV) to refer to a statistical procedure for 

describing the variability over an entire image, and [15] were 

correct in later renaming it as ‘average local variance’ (ALV). 

Because the local variability of any parameter can be a quality of 

objects at any spatiotemporal scale including the image as a 

whole, the use of LV as local variability is retained here for the 

sake of simplicity. 

The second terrain parameter approximates the asymmetrical 

heating of the land surface in the northern hemisphere [16]. This 

simple estimation of the anisotropic diurnal heat (Hα) distribution 

(referred to here as ADHD) is generated through a seven-step 

process involving the local slope aspect and angle of the DEM as 

they appear in the following formula: 

Hα = cos(αmax – α) • arctan(β) 

where αmax is the slope aspect of maximum total heat surplus in 

the northern hemisphere (202.5˚), α is slope aspect and β is the 

slope angle [16]. The ADHD index effectively approximates 

relative available soil moisture, possible changes in soil type and 

even possible changes in ecological community structure and 

function, especially when it is coupled with vertical complexity 

and elevation in terrain segmentations within an object-oriented 

ontology. Use of the biophysically and geoecologically relevant 

ADHD parameter also circumvents the problem encountered by 

[17] when attempting to segment terrain objects from surrogates 

like slope aspect [5]. 

B. Wind-related terrain attributes 

Due to the absence of surface meteorological observations, 

surface wind azimuths were approximated using the directions of 

long and narrow ‘microplume’ objects. The reprojected 1 km 

spatial resolution MODIS thermal infrared (TIR) surface/cloud 

temperature bands (23, 32 and 31) were segmented and classified 

in eCognition
®
 after a histogram equalization was applied to 

highlight and intensify the dust plumes (Fig. 1). The ‘main 

direction’ of the microplumes were averaged and reversed by 180 ̊

for the wind azimuths. The ‘directional relief’, ‘fetch analysis’ 

and ‘relative aspect’ were then generated in Whitebox GAT 

using the hypothetical azimuths for each storm [18]. 

 

 

 

 

 

 

Fig. 1. The 1 km spatial resolution MODIS thermal infrared (TIR) surface/cloud 

temperature bands 23, 32 and 31 (red, green and blue (RGB), respectively) after 

reprojection and histogram equalization (top row). Border region (left) and High 

Plains region (right) dust plumes appear red in these TIR translations of the 15 

December 2003 (a&b), 19 February 2004 (c&d) and 27 November 2005 (e&f) 

dust storms. The classified objects appear in the bottom row. Wind azimuths 

were derived from the white microplume objects within the red ‘macroplumes’. 
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C. Terrain segmentations 

Multiresolution terrain segmentations were completed for 

three subsets in the U.S.-Mexico border region containing the 

dust source presences so as to minimize presence

bias [4], [5], [19]. A ‘scale parameter’ of four was used and the 

‘shape’ and ‘compactness’ homogeneity criteria were set at 0.1 

and 0.7, respectively. Only the LV and ADHD attributes were 

used and a double weight was applied to the ADHD layer to 

ensure a higher degree of geoecological relevance. This results in 

terrain objects locally determined by both the variability in 

elevation and the estimated topo-climatic heating of the terrain. 

The 39,590.2 km
2
 subset containing the 15 December 2003 dust 

storm presences in the Lake Palomas basin yielded 46,887 

objects with a mean of 104.2 pixels (SD: 97.5) or mean area of 

84.4 hectares. The smaller but more topographically complex 

14,290.6 km
2
 subset for the 19 February 2004 dust storm is 

located on the eastern slope of the Sierra Madre Occidental in 

Mexico where a total of 33,886 terrain objects with a mean of 

52.1 pixels (SD: 53.4) or mean area of 42.2 hectares were 

segmented. The 73,429.5 km
2
 subset of the 27 November 2005 

model area in the Lake Palomas basin yielded 128,511 objects 

with a mean of 70.5 pixels (SD: 77.7) or mean area of 57.1 

hectares. Each of the presences and 10,000 background points 

was given a 1 km radius uncertainty buffer following the

confidence that the points were within one or two kilometers of 

the actual dust source [20]. The means for each of the six 

parameters were then calculated from the objects 

uncertainty buffers and compiled as ‘samples with data

for use in Maxent. 

III. RESULTS 

The Maxent models used cross-validation with 10 replicates 

for each of the four presence-only samples from the three du

storms. The logistic outputs of  the Maxent  distributions

 

 

 

 

Fig. 2. The logistic outputs of the Maxent 10-replicate average suitability 

distributions “projected” to the successively lower object level (top row) and 

pixel level (bottom row) for the 15 December 2003 (a-d; a&b

sample), 19 February 2004 (e&f) and 27 November 2005 (g&h) dust storms. 

Typical presences have values near 0.5 (green) [
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replicate average suitability 

distributions “projected” to the successively lower object level (top row) and 

d; a&b come from the [1] 

sample), 19 February 2004 (e&f) and 27 November 2005 (g&h) dust storms. 

Typical presences have values near 0.5 (green) [4]. 

were  “projected”  to  the  successively 

pixel levels within the presence subsets

December 2003 dust storm had the highest test and training 

AUCs (areas under the receiver operating characteristic [ROC]

curves) (Table 1). Furthermore, each of the four presence 

samples produced potentially usefu

AUCs above 0.75 [4]. However, the 10

model runs that are well-suited for small sample sizes also 

exhibit considerable variability (Fig. 3).

TABLE I.  RESULTS OF THE 10- REPLICATE MODEL RUNS

USING CROSS-VALIDATION

Dust Storm Day 

(DSD) 

Presences (n) and average area under the ROC 

curves (AUC)

# of dust source 

presences: 

Training n (Test n)

15 Dec 2003 [1] 29 or 30 (4 or 3) 

15 Dec 2003 62 or 63 (7 or 6) 

19 Feb 2004 53 or 54 (6 or 5) 

27 Nov 2005 56 or 57 (7 or 6) 

IV. DISCUSSIONS

A novel and geographically scalar approach for modeling 

suitability distributions for dust sources during major dust storms 

has been introduced. This object-oriented geoecological strategy 

provides a necessary and coherent foundation that uses 

geomorphometric terms alone. The early SDMs generated in 

Maxent in 2013 demonstrated that the obscuration of downwind 

dust sources by the dust plume(s) might be overcome in this way. 

The addition of three Whitebox GAT wind

attributes has resulted in improved models with AUCs high 

enough to consider them as being potentially useful. More 

importantly, by properly accounting for geographically uncertain,

and  therefore  biased,  presence samples, 

 

 

 

 

 

 

Fig. 3. Average omission and predicted area (top row) and test ROC curves 

(bottom row) for the four 10-replicate model runs for the 15 December 2003 (a

d; a&b come from the [1] sample), 19 February 2004

2005 (g&h) dust storms. One SD of omission is shown in orange and one SD of 

variability in the ROC curves is shown in blue.
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presence subsets. The [1] sample of the 15 

December 2003 dust storm had the highest test and training 

eiver operating characteristic [ROC] 

(Table 1). Furthermore, each of the four presence 

samples produced potentially useful models with average test 

AUCs above 0.75 [4]. However, the 10-replicate cross-validation 

suited for small sample sizes also 

exhibit considerable variability (Fig. 3). 

REPLICATE MODEL RUNS IN MAXENT 

VALIDATION. 

) and average area under the ROC 

curves (AUC) 

# of dust source 

Training n (Test n) 

 Training 

AUC 

Test 

AUC 

0.9142 0.8804 

0.8717 0.8315 

0.8624 0.7920 

0.8315 0.7976 

ISCUSSIONS 

A novel and geographically scalar approach for modeling 

suitability distributions for dust sources during major dust storms 

oriented geoecological strategy 

provides a necessary and coherent foundation that uses 

. The early SDMs generated in 

Maxent in 2013 demonstrated that the obscuration of downwind 

dust sources by the dust plume(s) might be overcome in this way. 

The addition of three Whitebox GAT wind-related terrain 

proved models with AUCs high 

enough to consider them as being potentially useful. More 

importantly, by properly accounting for geographically uncertain, 

presence samples,  the  Maxent  suitability  

Average omission and predicted area (top row) and test ROC curves 

replicate model runs for the 15 December 2003 (a-

] sample), 19 February 2004 (e&f) and 27 November 

2005 (g&h) dust storms. One SD of omission is shown in orange and one SD of 

variability in the ROC curves is shown in blue. 
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distributions are now able to be projected to the successively 

lower object and pixel levels. 

In doing so, we effectively go below the MODIS spatial 

resolutions through “displacement” to the spatial resolution of the 

geomorphometric terms while simultaneously retaining pixels as 

objects. That is to say, the suitability distributions have more or 

less been “transferred” to the lower scalar levels over the same 

spatial extents without privileging spectral remote sensing over 

and above geomorphometry. Not only does an object-oriented 

geoecology put the abiotic and biotic on equal ontological 

footing, it has also allowed, through a geographically scalar 

application of the maximum entropy principle, for dust sources to 

be either vagile or non-vagile objects. 

This approach can now be further improved with additional 

land-surface parameters and a more thorough investigation of the 

wind-related terrain attributes used here, and others including the 

‘channelling/deflection index’ (CDI) [18]. Analysis of specific 

dust storm characteristics is also required. For instance, the lower 

AUCs for the 19 February 2004 and 27 November 2005 dust 

storm models might be explained by the greater variability in the 

orientations and morphologies of the microplume objects and 

estimated wind directions. The 15 December 2003 dust storm 

models benefit from the many distinct microplumes of relatively 

uniform direction and shape. Additional geomorphometric 

analyses are also required for the region as a whole, especially 

with respect to the hydrology of the many playas and their 

associated agricultural uses. Finally, terrain objects like these can 

now be “encrusted” with the appropriate spectral data and further 

segmented for more comprehensive analyses. 
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