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Abstract — Automated procedures are developed to change scales 

so that long tails in frequency distributions of morphometric 

variables are avoided. They minimize the skewness of slope 

gradient frequency distributions, and modify the kurtosis of 

profile and plan curvature distributions towards that of the 

Gaussian (normal) model. Box-Cox (for slope) and arctangent (for 

curvature) transformations are tested on nine digital elevation 

models (DEMs) of varying origin and resolution, and different 

landscapes, and shown to be effective. Our results show 

considerable improvements over those for previously 

recommended slope transformations (sine, square root of sine, and 

logarithm of tangent). By avoiding long tails and outliers, they 

permit parametric statistics such as correlation, regression and 

principal component analysis to be applied, with greater 

confidence that requirements for linearity, additivity and even 

scatter of residuals (constancy of error variance) are likely to be 

met. It is suggested that such transformations should be routinely 

applied in all parametric analyses of long-tailed variables. Our 

Box-Cox and curvature automated transformations are based on a 

Python script, implemented as an easy-to-use script tool in 

ArcGIS. 

I.  INTRODUCTION 

For most types of statistical analysis, it is important to check 
the shape of the frequency distribution of each variable. Many 
statistical approaches assume that the variables are normally 
distributed, and a violation of this assumption can lead to errors 
in analysis. ‘Long tails’ of values at either extreme or both are 
the main problem. This is tackled by changing (transforming) 
the measurement scale. Unfortunately, many environmental 
science publications overlook the need to apply transformation 
in this way. 

Most slope frequency distributions have the mean and mode 
usually closer to 0° than to the upper limit of 90°. The lower tail 
is limited and the upper tail is commonly more extended, giving 
widespread positive skew. This is common also because, even 

in mountain or hill regions consisting mainly of slopes, 
deposition in fans, floodplains and lakes produces extra areas of 
low gradient, ‘fattening’ frequencies below the mean. Where 
these features are absent, however, distributions may be 
symmetrical or, where high relief pushes gradient toward a 
limiting value for slope stability, negatively skewed – with a tail 
extending toward lower values. 

Given this natural diversity between regions, there have 
inevitably been different transformations proposed to rectify 
slope skewness [1] [2] [3]. Evans [4] favoured no single 
transformation, but later he inclined to use of the square root of 
sine [5].  

For real-world DEMs, the distribution of curvatures 
measured in degrees per unit length is always strongly peaked at 
the mode of zero, and both tails are very long. The presence of 
extremely positive and negative values makes calculations 
extremely sensitive to outliers. There is less work on 
transformation to rectify kurtosis than on skewness: 
transformation of curvatures to normality is difficult, but can be 
achieved using a two-sided function such as the arctangent [6]. 

We propose general solutions to the transformation of 
surface derivatives, specifically slope gradient and curvatures, 
so that estimates of statistics such as correlation, regression, 
analysis of variance and principal component analysis will not 
be distorted by extreme values. Automated procedures are 
described for reducing skewness and kurtosis to the parameters 
of a normal, Gaussian distribution. 

II. DATA AND METHODS 

A. Data used 

Tests were conducted on 9 Digital Elevation Models (DEMs) 
differing in spatial resolution, extent, altitude range, type and 
landscape. Spatial resolutions ranged from 1m to 90m. The  
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TABLE I.  DEM CHARACTERISTICS. 

Test 

Area 
Name 

Spatial 

resolution 
Method 

Scene size 

(pixels) 

Altitude 

range (m) 

Mean 

altitude (m) 
Region Courtesy of 

A Slovinec 1 m Photogrammetric 306 x 300 141 - 244 187 Slovakia University of Bratislava 

B Fishcamp 2.5 m LiDAR 638 x 318 1443 - 1833 1658 USA USGS National Map seamless server 

C Boschoord 5 m LiDAR 1108 x 1079 2 - 20 6 Netherlands Universiteit van Amsterdam 

D 
Țarcu 

Mountains 
10 m Topo 905 x 871 1045 - 2195 1706 Romania  

E Ebergotzen 25 m Topo 398 x 398 159 - 429 272 Germany 
State Authority for Mining, Energy and 

Geology, Germany 

F Baranja Hill 25 m Topo 145 x 147 85 - 244 158 Croatia Croatian State Geodetic Department 

G Zlatibor 30 m Topo 148 x 98 851 - 1174 991 Serbia 
Geodetic Governmental Authority of 

Serbia 

H 
Apuseni 

Mountains 
90 m SRTM 412 x 411 404 - 1824 1054 Romania 

USGS – Shuttle Radar Topography 

Mission 

I 
Banat Plain 

and Hills 
90 m SRTM 1185 x 604 65 - 588 106 Romania 

USGS – Shuttle Radar Topography 

Mission 

 

spatial extent of test areas ranged between 306 × 300 m and 
106.7 × 54.4 km. DEM types include photogrammetric, LiDAR, 
SRTM and those derived from topographic maps (Table 1). 
Landscape and geomorphologic characteristics vary from very 
low relief, mixed plain and hilly landscape, hilly areas to 
mountainous areas.  

B. Automated normalization of LSVs 

Box-Cox transformation [7] is one of the most widely used 
methods to transform data to approximate the bell-shaped 
normal (Gaussian) frequency distribution model. It identifies an 
exponent (lambda, λ) to which all the values should be raised in 
order to acquire the above-mentioned shape. This is in line with 
Tukey's 'ladder of transformations'. Note that for λ = 0 slope 
values are not raised to the power of 0 (because this would be 1 
for every value) but a logarithmic transformation is applied 
(Table 2). 

TABLE II.  BOX–COX TRANSFORMATIONS: LAMBDA (λ) VALUES USED TO 

TRANSFORM INITIAL VALUES OF SLOPE (x, IN DEGREES) INTO POSSIBLY 

NORMALIZED SLOPE (y). 

λ −2 −1 −0.5 0 0.5 1 2 

y 1/x2 1/x 1/√x log x √x x x2 

 

Applying the Box-Cox transformation for slope angle, the 
initial skewness (with λ = 1) was compared with that for λ equal 
to 2 or 0.5. Further, we kept the lowest skewness and compared 
this iteratively with the next λ value in the Box-Cox 
transformation scale. Thus we selected the λ to be used in the 

normalization of slope. To avoid an indeterminate logarithm (λ 
=0) or division by 0 (λ <0) we added a constant value, (1− min), 
to each value of slope prior to applying the transformations, 
where min is the minimum value of slope. This moves the 
minimum value of the distribution to 1°, changing only the 
mean, while keeping standard deviation, skewness and kurtosis. 

In order to deepen the analysis, we computed three other 
slope rasters using formulas available in the literature (eq. 1 – 
[3]; eq. 2 – [6]; eq. 3 – [4]) and compared the results with those 
of the Box-Cox transformation: 

TransformedSlope = sin(slope)  (1) 

TransformedSlope = sqrt(sin(slope)) (2) 

TransformedSlope = ln(tan(slope)) (3) 

For both profile and plan curvature, the formula proposed by 
Evans [7] was applied: 

TransformedCurvature = arctan(k × curvature)   (4) 

where k is a parameter to give normalized curvature with 
kurtosis close to 0. Arctangent transformation preserves the sign 
and positive, zero and negative curvatures remains such. Long 
tails are pulled in symmetrically, depending on the value of k: 
the higher the k is, the more pulling in. The selection of k values 
is still a trial-and-error approach and differs from one dataset to 
another, depending on their characteristics. The automated 
workflow to select the appropriate value of k starts from k = 0.1. 
If kurtosis of transformed curvature is less than the initial 
kurtosis, the iteration continues until a value of k producing 
kurtosis close to 0 is found. 
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III. RESULTS 

In terms of skewness, the Box-Cox transformation gave the 
least skewed result for all test areas except one where sine 
transformation gives skewness of 0.006 instead of 0.224, but 
here no transformation is needed any way. The log-tangent (Eq. 
3) seriously over-transformed seven areas, producing negative 
skewness. The sine (Eq. 1) is a weak transformation and usually 
makes little difference. The square-root of sine (Eq. 2) over-
transformed the four distributions with skewness < 0.4, but it 
did improve distributions for two test areas. All slope gradient 
distributions had |skewness| < 0.28 after Box-Cox 
transformation, so this can be recommended for general use 
even if it is not quite optimal in two test areas (Fig. 1). 

 

 

Figure 1.  Comparison of skewness (vertical axis) of original slope and 

transformations according to different formulas for test areas A to I. Lambda 

(λ) values detected for Box-Cox are displayed below each test area. 

For profile curvature, the initial kurtosis varies between 2.46 
and 46.24: the higher the kurtosis, the sharper the mode around 
0 and the longer the tails. The arctangent transformation brings 
in both tails, giving finite values mainly between −1.5 and +1.5. 
All the transformed distributions now have kurtosis values 
between −0.14 and 0.01, negligibly different from normality, 
suggesting that the automatically identified k values are 
meaningful (Fig. 2). This does not necessarily make them 
optimal, as other aspects of histogram shape should be 
considered. Use of 2k and k/2, however, showed much worse 
results both in kurtosis (Fig. 2) and in other aspects of shape: 
judged by visual inspection of histograms, the automatically 
selected k values seem optimal. The skewness is acceptable. 

 

Figure 2.  Kurtosis for (a) profile curvature and (b) plan curvature: values after 

transformation using k and (for comparison) after transformation using 2k, k/2 

and cube root. 

Depending on the size, spatial resolution and relief 
characteristics of each test area, the values of k varied between 
0.6 and 46.4. Cox [8] suggested that a cube root transform 
would reduce kurtosis while avoiding the need to select a k 
value. For these DEMs, however, it produced bimodal 
histograms with negative kurtosis (Fig. 2). 

Plan curvature histograms have longer tails and initial 
kurtosis ranges from 0.43 to 82.99. As for profile curvature, the 
arctangent transformation reduced the range of values to 
between −1.5 and +1.5, the mode is around 0 and only one test 
area presents important secondary modes. All the transformed 
histograms of frequency distribution are more nearly Gaussian, 
with kurtosis between −0.13 and 0.13 with k values between 0.1 
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and 3.2 (Fig. 2). The higher the kurtosis, the higher the k value 
needed for normalization. 

IV. DISCUSSION AND CONCLUSIONS 

We developed a Python tool to perform the transformation 
of slope gradient and curvatures to near-Gaussian distribution 
shapes. This study showed that Box-Cox transformation is 
effective in identifying the appropriate transform of slope 
gradient in a given area, so that slope skewness can be 
automatically rectified. The algorithm for arctangent 
transformation of curvatures is based on the formula proposed 
by Evans [6], and replaces a trial-and-error determination of a 
data-dependent parameter k, by an iterative tuning towards 
kurtosis close to 0. Thus, we provide a ‘push-the-button’ 
solution to prepare these surface derivatives for statistical 
(parametric) analysis. Use of a tool such as this is important in 
any terrain-based environmental analysis where slope gradient 
and curvatures are statistically related to other variables using 
parametric techniques (e.g. correlation or regression).  

For further information about transformation (normalization) 
of slope gradient and surface curvatures, please refer to Csillik 
et al. [9]. The ArcGIS toolbox is available on the page: 
http://research.enjoymaps.ro/downloads. 
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