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Abstract—Vegetation mapping is a significant issue in city 

modeling and estimating vegetation properties. This paper aims 

to accurately extract vegetation point clouds from urban and 

mountainous areas using discrete-return and full-waveform 

airborne Light Detection and Ranging (LiDAR) data. For the 

full-waveform LiDAR data, the full-waveform decomposition and 

modeling technique based on kernel function is proposed to 

generate dense 3D point clouds. Then, the pre-segmentation 

algorithm based on probability density analysis is employed to 

generate homogenous segments for a supervised, segment-based 

SVM classifier, which uses more relevant features derived from 

geometric, radiometric, multi-echo and full-waveform attributes. 

Finally, Our approach is experimentally validated on the datasets 

from the Helsinki University of Technology, Finland and 

Dayekou, Zhangye City, Gansu Province, China. 

I. INTRODUCTION  

To acquire the accurate 3D point clouds for vegetation 
mapping, in this paper, the object-based vegetation extraction 
method is proposed using airborne LiDAR data from 
discrete-return TopEye sensor and full-waveform RIEGL 
LMS-Q560 scanner. We address the following objects. (i) 
Decomposition and modeling of waveform profiles by 
extensible kernel library using optimization technique; (ii) A  
pre-segmentation by the probability density clustering for the 
subsequent segment-based SVM classifier; (iii) Extraction of 
relevant features from both full-waveform backscattered 
amplitude profiles and discrete point clouds for segment 

features calculation and (iv) Hierarchical object-based 
classification framework to extract vegetation point clouds 
using these relevant segment features. 

II. MATERIALS 

A. Study areas 

Two airborne LiDAR datasets of Helsinki (Fig. 1a) and 
Dayekou (Fig. 1b) were used to evaluate the robustness of the 
proposed approach.  

  

Fig1. Aerial image of the study area in (a) Helsinki and (b) Dayekou 

B. Data sets 

The discrete-return TopEye instrument system was used to 
conduct the Laser campaigns of Helsinki University of 
Technology in September 2002. It can only simultaneously 
acquire the first and last pulse point clouds and the 
helicopter-borne TopEye system (wavelength of 1064 nm, 
maximum scan angle ±20°) was used to collect laser data at 
flying altitudes of 200 m and 550 m.  

（a） （b） 
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For the other study area of Dayekou, the full-waveform 
data with the coordinate system of the UTM/WGS 84 at the 
zone of 32 was used in this paper. It were captured by Y-12 
airplane, which carried the LiteMapper 5600 full-waveform 
airborne LiDAR system at 1GHz frequently sampling rate in 
June 2008. The LiteMapper system adopted in this paper used 
a RIEGL LMS-Q560 laser scanner with near-infrared (1550 
nm) laser pulses and a transmitted pulse width of 4 ns. It has a 
laser beam divergence angle of 0.5 mrd, which produces a 
footprint diameter of approximately 0.38 m on the target at 
nadir. The laser scanning pulse rate was 50 KHz and the 
maximum scan angle for data set was ±22.5°from nadir. 

III. METHODOLOGY 

A. Full-waveform decomposition and modeling 
techniques 

(1) Savitzky-Golay filtering 

As shown in Fig. 2, the raw backscattered profile includes 
actual signal and noise. To uncover the regular pattern and 
provide the reliable signal for calculating robust initial 
parameters in full-waveform decomposition and modeling 
process, the Savitzky-Golay (SG) smoothing filter (Savitzky et 
al., 1964) is selected to smooth the equally time spaced 
full-waveform signals.  

 

Fig. 2 Savitzky-Golay (SG) smoothing for some typical full-waveform 

backscattering pulses. 

(2) Full-waveform decomposition and modeling 

The waveform airborne backscatter signal is composed of 
points uniformly spaced (xi,yi){i=1 ,..., N} sampled at 1 GHz for 
our Riegl LMS-Q560 point clouds, and the energy function is 

described as: 
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where N is the number of samples; n is the number of 
components, representing the targets located within the travel 
path; p is the number of parameters of the fitting functions, 

and ( , )j iP x θ  represents the given kernel function. Three 

kernel functions are used in this paper: (i) the Gaussian and 
general Gaussian kernels are used to process symmetrical 
backscattered echoes; (ii) the Nakagami kernels are employed 
to process left-skewed or right-skewed echoes.  

Since the composition of kernels is varied, the traditional 
Gaussian-Newton or Levenberg-Marquardt algorithm cannot 
solve the above non-convex energy function. To deal with this 
problem, the reversible jump Markov chain Monte Carlo 
(MCMC) sampler (Hastings, 1970) coupled with simulated 
annealing are used to find the global minimum. As shown in 
Fig. 3, The typical full-waveform backscattering pulses are 
modeled by the above proposed method. 

Fig. 3 Results of typical full-waveform fitting on Dayekou airborne LiDAR 

pulses. The red points denote the raw digitalized backscatter signals; The 

green and black profiles indicate the smoothed signals and the modeled 

backscattered signals, respectively. 

(3) Generation of three-dimensional point clouds 

When the optimal location of each backscattered echo Tj is 
obtained, the corresponding discrete point clouds Xj are 
analyzed by: 

( ) ( 1,..., )j start j start startX X C T T d j n= + − =       (2) 

where Xstart, dstart and Tstart are the first sample of start pulse 
waveform, the emitted laser  pulse direction, and the start 
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time of the waveform, respectively; n is the number of 
detected targets or components per emitter laser pulse; C is the 
speed of light. 

B. Pre-segmentation 

Object-based classification approach has already proven to 
be a high suitability for pixel classification. In this section, the 
pre-segmentation method (Poullis et al., 2009) based on 
probability density clustering is proposed to segment discrete 
point clouds, and the pre-segmentation results are prepared for 
the subsequent segment-based SVM classifier. The 
pre-segmentation result is shown in Fig. 4. 

Fig. 4. Pre-segmentation results based on probability density clustering. Note 

that the colors are reused and may appear in different regions. 

C. Extraction attributes from full-waveform profiles 

Through the Eq. (1), the optimal Tj, Aj and σj of each 
backscatter echo j are obtained. The parameter Aj should be 
corrected to eliminate the fluctuation effects of the emitted 
power E, the incidence angle α and the range R. The corrected 
procedure is described as: 

2
'

2
j mean
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A A RA
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=                   (3) 

where Amean is the average amplitude value of all emitted 
pulses and Acurrent is the amplitude of the emitted pulse of the 
current peak. R, Rs and α are the range between the current 
target and the sensor, a standard range for the whole survey 
area and the incident angle between the laser beam and the 
estimated local plane, respectively. The full width at half 
maximum (FWHM) echo Wj can be inferred by: 

2 2ln 2j jW σ=                    (4) 

Based on the radar equation, the “apparent” cross-section 
σj of each detected backscatter echo j derived by Wagner et al. 
(2006), which is defined as: 

4j
cal j jC R Aσ σ=                   (5) 

where Ccal is the calibration constant, which is calculated by 
the process of Lehner and Briese (2010) where a portable 
reflectometer and spectralon targets are used to estimate 
calibration constant of in situ radiometric reference targets 
(e.g., asphalt areas close to nadir view for each LiDAR strips). 
R is the range from the sensor to the target.  

Furthermore, σ0 is the cross-section normalized by the 
illuminated area sj [m2 m-2], which is described as:  

0
j

js
σσ =                       (6) 

The used of σ0 has advantages that measures of radar 
system with different spatial resolution can be easily compared, 
when σj increases in general with sj. However, when α is 
changed, the corresponding illuminated area sj is also changed, 
so the cross-section σj is also related to the incoming beam. 
The backscatter coefficient γ is the cross-section normalized 
by the incoming beam and described as: 

 
2 2
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When the reflected target is an area-extend targets, i.e., the 
size is larger than the footprint size of the sensor, the γ is also 
equal to Eq. (8), which can be considered as σ0 corrected by 
incidence angle α. 

cos

j
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α
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The four full-waveform attributes (i.e., echo width W, 
backscatter cross-section σ, backscatter cross-section per 
illuminated area σ0 and backscatter coefficient γ) derived from 
the full-waveform airborne LiDAR data are referred to as 
radiometric information. 

D. Extraction features from discrete point clouds 

In this section, the radiometric, Height-based, Plane-based, 
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Eigenvalue-based and multi-echo features are extracted form 
discrate airborne LiDAR point clouds. For more details of 
feature definition, please refer to the related paper (Mallet et 
al., 2011). 

IV. CLASSIFICATION 

In this section, non-parametric method, i.e., SVM classifier 
is employed to classify the segments. It performs a robust 
non-linear classification of samples using the diversity kernel 
functions with a small number of parameters, and can 
effectively avoid over-fitting and under-fitting problems 
during learning from samples. As shown in Figs. 5 and 6, the 
accurate vegetation points are extracted from Finland and 
Dayekou data sets. 

Fig. 5. The classification results of the Helsinki dataset. 

 

 

 

Fig. 6. The classification results of the Dayekou dataset. (a) The multispectral 

ortho-image. (b) The generated DEM. (c) The extracted vegetation points 

(light green color) are overlaid on their digital surface model. 

V. CONCLUSION 

The segment-based classification algorithm exhibits more 
significant features and robust classification than point-wise or 
pixel-wise classification. The combination of full-waveform 
attributes and  geometrical  featues derived from discrete 
point clouds can sigmificantly improve the accurate vegetation 
mapping. In our further research, the full-waveform, LiDAR 
data will be employed to acquire more plentiful information 
that is based on a radiation mechanism. Additionally, for high 
density point clouds, vegetation structure models will be 
integrated into our future work for better vegetation extraction.  

ACKNOWLEDGEMENT 

We are grateful to the editors and reviewers for their 
valuable comments and suggestions which have helped us 
improve the context and presentation of the paper. The study is 
supported by National Natural Science Foundation of China 
(No. 41301521). 

REFERENCES 

[1] Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of 

data by simplified least squares procedures. Analytical chemistry, 

36(8):1627-1639. 

[2] Hastings, W. K., 1970. Monte Carlo sampling methods using Markov 

chains and their applications, Biometrika, 57(1):97-109. 

[3] Poullis, Charalambos You, Suya, 2009. Automatic reconstruction of 

cities from remote sensor data. IEEE Conference on Computer Vision 

and Pattern Recognition, 2775-2782. 

[4] Wagner, W., Ullrich, A., Ducic, V., Melzer, T., Studnicka, N., 2006. 

Gaussian decomposition and calibration of a novel small-footprint 

full-waveform digitising airborne laser scanner. ISPRS Journal of 

Photogrammetry and Remote Sensing, 60(2):100-112. 

[5] Lehner., H., Brese, C., 2010. Radiometric calibration of full-waveform 

airbrone laser scanning data based on natural surfaces. International 

Archives of Photogrammetry Remote Sensing and Spatial Information 

Sciences. XXXVIII, part7B, 360-365. 

[6] Mallet, C., Bretar, F., Roux, M., Soergel, U., Heipke, C., 2011. 

Relevance assessment of full-waveform lidar data for urban area 

classification. ISPRS Journal of Photogrammetry and Remote Sensing, 

66(6): 71-84. 

 

（a） 

（b） 

（c） 

98

app:lj:%E5%87%A0%E4%BD%95%E7%9A%84?ljtype=blng&ljblngcont=0&ljtran=geometrical�
http://dx.doi.org/10.1016/j.isprsjprs.2011.09.008�

