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Abstract—A high performance terrain data compression method is 

proposed based on discrete wavelet transform (DWT) and parallel 

run-length code. But the implementation of the schemes to solve 

these models in realistic scenarios imposes huge demands of 

computing power. Compute Unified Device Architecture (CUDA) 

programmed, Graphic Processing Units (GPUs) are rapidly 

becoming a major choice in high performance computing. Hence, 

the number of applications ported to the CUDA platform is 

growing high. Message Passing Interface (MPI) has been the choice 

of high performance computing for more than a decade and it has 

proven its capability in delivering higher performance in parallel 

applications. CUDA and MPI use different programming 

approaches but both of them depend on the inherent parallelism of 

the application to be effective. In this approach, MPI functions as 

the data distributing mechanism between the GPU nodes and 

CUDA as the main computing engine. This allows the programmer 

to connect GPU nodes via high speed Ethernet without special 

technologies. We tackle the acceleration of the compression of 

digital elevation models (DEM) by exploiting the combined power 

of several CUDA-enabled GPUs in a GPU cluster. This 

implementation overlaps MPI communication with CPU-GPU 

memory transfers and GPU computation to increase efficiency. 

Several numerical experiments, performed on a cluster of modern 

CUDA-enabled GPUs, show the efficiency of the distributed solver. 

Our speed-up was over 20 compared to two thread CPU version. 

I.  INTRODUCTION 

With the development of technology of remote sensing, the 
size and resolution of DEM has quickly increased. Today, spatial 
resolutions as high as 1m are available for some areas, and data 
at only slightly lower resolution is currently being acquired for 
ever larger regions worldwide. The storage and transmission of 
high-resolution elevation information can consume amounts of 
resources, and with the increased interest in mapping the earth 
and having maps for real time navigation, the development of 
compression techniques to help in these tasks is becoming very 
important. 

At first people use the traditional Fourier transform, although 
the transform is simple and fast in data compression, but it also 
loss a lot of information of the data. Therefore, there need fast 

lossless compression in order to satisfy application requirement. 
Different compression schemes have been developed to exploit 
this property. Wavelet transform have been applied for image 
lossless compression or at least near-lossless way which can be 
used for image compression [1]. Since wavelet transform 
possesses resolution both in space domain and in frequency 
domain, it is very suitable for dealing with the data with 
instability, less relativity or less redundancy. DEM data inheres 
in the characteristics of instability, fragmentation and less 
relativity, here by discrete wavelet transform is rather suitable for 
DEM data compression [2, 3, 4]. However, for the huge data, the 
traditional application of wavelet transform is less considering 
parallelism, which will cause long time for transform. The GPU 
is an attractive platform for a broad field of applications, because 
it still remains a significant high arithmetic processing capability 
and is often less utilized. Therefore it can be used as a powerful 
accelerator without extra cost [5]. These platforms make it 
possible to achieve speedups of an order of magnitude over a 
standard CPU in many applications and are growing in popularity 
[6, 7].  

Moreover, several programming toolkits such as CUDA [8] 
have been developed to facilitate the programming of GPUs for 
general purpose applications. There are previous works to 
compress data by using a graphics-specific programming 
language, but currently most of the proposals to compression on 
a single GPU are based on the CUDA programming model. 
Although the use of single GPU systems makes it possible to 
satisfy the performance requirements of several applications, 
many applications require huge meshes, large numbers of time 
steps and even real time accurate predictions. These 
characteristics suggest to combine the power of multiple GPUs. 

One approach to use several GPUs is based on programming 
shared memory multi-GPUs desktop systems. These platforms 
have been used in fluid dynamic [9] and shallow water [10, 11] 
simulations by combining shared memory programming 
primitives to manage threads in CPU and CUDA to program the 
GPU. However, this cost-effective approach only offer a reduced 
number of GPUs (2-8 GPUs) and more flexible systems are 
desirable. A more flexible approach involves the use of clusters 
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of GPUs-enhanced computers where each node is equipped with 
a single GPU or with a multi-GPUs system. The computation on 
GPUs clusters could make it possible to scale the runtime 
reduction according to the number of GPUs. Thus, this approach 
is more flexible than using a multi-GPUs desktop system and the 
memory limitations of a GPUs-enhanced node can be overcome 
by suitably distributing the data among the nodes, enabling us to 
simulate significantly larger realistic models and with greater 
precision. The use of GPUs clusters to accelerate intensive 
computations is gaining in popularity [12, 13, 14, 15, 16, 17]. 
Most of the proposals to exploit GPUs clusters use MPI [18] to 
implement inter process communication and CUDA [19] to 
program each GPUs. A common way to reduce the remote 
communication overhead in these systems consists in using non-
blocking communication MPI functions to overlap the data 
transfers between nodes with GPUs computation and CPU-GPU 
data transfers. 

In this work, an implementation of DWT compression to the 
raster DEM is developed for a GPUs cluster by using MPI and 
CUDA. The outline of the article is as follows: Section 2 
summarizes the background to DWT compression and provides 
an introduction to MPI-CUDA. In Section 3 we provide the main 
details of our parallelization strategy for the DWT compression 
using MPI-CUDA. Experimental results are analyzed in Section4. 
Finally, Section 5 summarizes the work and concludes the paper. 

II.  THE COMPRESSION OF DEM 

A.  DWT by CUDA 

The DWT of image signals produces a non-redundant image 
representation, which provides better spatial and spectral 
localization of image information as compared to other multi-
resolution representation [20]. For an input represented by a list 
of 2n numbers, the Discrete wavelet transform may be considered 
to simply pair up input values, storing the difference and passing 
the sum. This process is repeated recursively, pairing up the sums 
to provide the next scale: finally resulting in 2n−1 differences 
and one final sum. The describe of the DWT is in Eq.1 and Eq. 2.  
     ( ) is the original pending signal data;    ( ) is the 

approximation coefficient;   ( ) is the accurate coefficient;    is 
the low-frequency filter;    is the high-frequency filter. 
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The DWT for an image as a 2D signal will be obtained from 
1D DWT. We get the scaling function and wavelet function for 
2D by multiplying two 1D functions. This may be represented as 
a four channel perfect reconstruction filter bank as shown in Fig. 
1. Now, each filter is 2D with the subscript indicating the type of 
filter (HPF or LPF) for separable horizontal and vertical 
components. By using these filters in one stage, an image is 
decomposed into four bands. There exist three types of detail 

images for each resolution: horizontal (HL), vertical (LH), and 
diagonal (HH).  

The operations can be repeated on the low low (LL) band 
using the second stage of identical filter bank. Thus, a typical 2D 
DWT, used in image compression, generates the hierarchical 
structure shown in Fig. 2. 

 

Fig. 1. One Filter Stage in 2D DWT 

 

Fig. 2. Structure of wavelet decomposition 

B.  Rarallel Run-length Code by CUDA 

This section presents the parallel VLE (Virtual Learning 
Environment) algorithm for General Purpose GPU with hardware 
support for atomic operations. The parallel variable-length 
encoding consists of the following parallel steps: (1) assignment 
of code words to the source data, (2) calculation of the output bit 
positions for compressed data (code words), and finally (3) 
writing (storing) code words to the compressed data array. In the 
first step, variable-length code words are assigned to the source 
data. The code words can be either computed using an algorithm 
such as Huffman, or they can be predefined, e.g. as it is 
frequently the case in image compression implementations. 
Without loss of generality, we can assume that the code words 
are available and stored in a table. This structure will be denoted 
as the code word look-up table (code word LUT). Each entry in 
the table contains two values: the binary code for the code word, 
and code word length in bits, denoted as a (cw, cwlen) pair. Our 
implementation uses an encoding alphabet of up to 256 symbols, 
with each symbol representing one byte. During compression, 
each source data symbol (byte) is replaced with the 
corresponding variable-length code word. 

C.  MPI-CUDA 

NVIDIA SLI technology can be used to connect multiple 
GPUs that are in one computer and as of the latest release of the 
CUDA sdk, all those SLI (Scalable Link Interface) connected 
GPU cards can only be seen as one single GPU by the 
programmer. But we can connect GPU cards in different 
computers using Ethernet and exploit CUDA+MPI model so that 
it enables the user to see different GPUs in different computers as 
separate processing engines. Hence the programmer can execute 
different kernels in one application on different GPUs at the same 
time. 
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CUDA is the programming language provided by NVIDIA to 
run general purpose applications on NVIDIA GPUs. The CUDA 
incorporates an Application Programmer Interface, a runtime, 
couple of higher level libraries and a device driver for the 
underline GPU. 

MPI provides a standard set of subprogram definitions which 
allow parallel programs to be written using a distributed memory 
programming model to allow more than one process to perform 
computations on a given set of data copies of this data must be 
sent to any process which requires it (to be saved on that 
process’s memory). This is referred to as message passing. 

D.  System design 

We successively overlap computations with inter-node and 
intra-node data exchanges to better utilize the cluster resources. 
All the implementations have much in common, with differences 
in the way data exchanges are implemented. We show that 
implementation details in the data exchanges have a large impact 
on performance. 

For all implementations, one MPI process is started per GPU. 
Since we must ensure that each process is assigned a unique GPU 
identifier, an initial mapping of hosts to GPUs is performed. A 
master process gathers all the host names, assigns GPU 
identifiers to each host such that no process on the same host has 
the same identifier, and scatters the result back. At this point the 
cuda SetDevice()call is made on each process to map one of the 
GPUs to the process which assures that no other process on the 
same node will map to the same GPU. 

These kernels implement the computation steps of the solver 
in the GPU, and do not require any modification for use in the 
multiple GPU implementation. We added the use of constant 
memory to support runtime model configuration while 
maintaining efficient GPU memory accesses to this common data. 
A temperature kernel was added and the momentum kernel 
changed to apply the buoyancy effect. 

III.  RESULTS AND DISCUSSION 

A.  Experimental Platform 

All experiments are done using both CPU and MPI-CUDA. 
The configurations for them are listed in Table 1 and Table 2. 
The experiment requires some software and tools for 
programming and documenting purpose: CUDA SDK 4.2\VS 
2010\ Nsight Visual Studio Edition 2.2. 

TABLE I.  DEVICE CONFIGURATION AT EXPERIMENT 

Feature Specification 

Name GeForce GT 650M 

CUDA Driver 
Version 

4.2 

MPI MPICH2-1.0.1 

Feature Specification 

Total Global memory 2048M 

#Multiprocessor 2 

#Cores 384 

 

TABLE II.   TABLE 2: HOST MACHINE CONFIGURATION AT EXPERIMENT 

Feature Specification 

System Model Y480 Notebook 

Operating Systerm Windows xp 

Manufacture Lenovo 

Processor Intel(R) Core(TM) i5-3210M 

Memory 4096MB RAM 

 

B.   Experimental Data 

  For test the different performance of the CUDA-based DWT 

compression, we use srtm_57_05 images (Fig.3) ranging from 

256*256 to 6000*6000. 

 
Fig. 3 srtm_57_05 Image 

C.   Experimental Result 
To evaluate the proposed method, we examined each 

execution time of the DWT on a CPU and MPI-CUDA. The 
program for the CPU is implemented in C++ language. Every 
image makes the DWT on a CPU and MPI-CUDA. The 
execution time of the GPU is much less than the time taken on 
the CPU: we can see that when the image is small (256*256) the 
time spends on the both devices is almost the same. It is due to 
the fact that the data transfer overhead (from CPU to MPI-CUDA 
and vice versa) in case of small image size mitigating the parallel 
execution effects. For larger data sizes, the speedup obtained by 
the parallel operations take over the data transfer overheads and 
hence the performance gain becomes more obvious. With 
resolution’s increase, the MPI-CUDA’s accelerator is more 
obvious (from 1.2 to 20.8). The speed-up ratio increase, when the 
image size becomes larger. It shows that the larger image the 
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more efficiency of the MPI-CUDA DWT compression. So the 
experiment has proved the MPI-CUDA can be used to improving 
the speed of DWT compression to dem. By using the GPU for 
decoding, the CPU is free for other tasks like prefetching and 
data management. We validated these statements by integrating 
the compression and decoding schemes into a terrain rendering 
system, and we showed that high visual quality on high-
resolution displays is possible at interactive frame rates. 

 D.  Discussion 

In this paper, we present a MPI-CUDA accelerated DWT 
compression for images method using the CUDA and MPI. We 
realized significant improvement in runtime (speedup to 20.8), 
with imperceptible degradations of quality. Although this 
experiment has verified that MPI-CUDA parallel computation on 
GPUs significantly increases the speed of the discrete wavelet 
transform, much work remains to be done. The DWT method 
based on CUDA has many places to improve, for example, using 
the texture memory (it will be fast) to translate the data. 
Moreover, the DWT compression is only one step of DEM 
processing, the method should be used in some DEM processing, 
such as DEM realtime display. By using the GPU for decoding, 
the CPU is free for other tasks like prefetching and data 
management. We will validate these statements by integrating the 
compression and decoding schemes into a terrain rendering 
system, and show that high visual quality on high-resolution 
displays is possible at interactive frame rates. 
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