
Geomorphometry.org/2013 Fei and YuMin

 O-4-1

An MPI-CUDA Implementation for the Compression of

DEM
Zeng Fei

Wuhan University

61363 Troops

Wuhan, China

Chen Yumin

Wuhan University

Wuhan, China

Tony2fish@163.com

Abstract—A high performance terrain data compression method is

proposed based on discrete wavelet transform (DWT) and parallel

run-length code. But the implementation of the schemes to solve

these models in realistic scenarios imposes huge demands of

computing power. Compute Unified Device Architecture (CUDA)

programmed, Graphic Processing Units (GPUs) are rapidly

becoming a major choice in high performance computing. Hence,

the number of applications ported to the CUDA platform is

growing high. Message Passing Interface (MPI) has been the choice

of high performance computing for more than a decade and it has

proven its capability in delivering higher performance in parallel

applications. CUDA and MPI use different programming

approaches but both of them depend on the inherent parallelism of

the application to be effective. In this approach, MPI functions as

the data distributing mechanism between the GPU nodes and

CUDA as the main computing engine. This allows the programmer

to connect GPU nodes via high speed Ethernet without special

technologies. We tackle the acceleration of the compression of

digital elevation models (DEM) by exploiting the combined power

of several CUDA-enabled GPUs in a GPU cluster. This

implementation overlaps MPI communication with CPU-GPU

memory transfers and GPU computation to increase efficiency.

Several numerical experiments, performed on a cluster of modern

CUDA-enabled GPUs, show the efficiency of the distributed solver.

Our speed-up was over 20 compared to two thread CPU version.

I. INTRODUCTION

With the development of technology of remote sensing, the
size and resolution of DEM has quickly increased. Today, spatial
resolutions as high as 1m are available for some areas, and data
at only slightly lower resolution is currently being acquired for
ever larger regions worldwide. The storage and transmission of
high-resolution elevation information can consume amounts of
resources, and with the increased interest in mapping the earth
and having maps for real time navigation, the development of
compression techniques to help in these tasks is becoming very
important.

At first people use the traditional Fourier transform, although
the transform is simple and fast in data compression, but it also
loss a lot of information of the data. Therefore, there need fast

lossless compression in order to satisfy application requirement.
Different compression schemes have been developed to exploit
this property. Wavelet transform have been applied for image
lossless compression or at least near-lossless way which can be
used for image compression [1]. Since wavelet transform
possesses resolution both in space domain and in frequency
domain, it is very suitable for dealing with the data with
instability, less relativity or less redundancy. DEM data inheres
in the characteristics of instability, fragmentation and less
relativity, here by discrete wavelet transform is rather suitable for
DEM data compression [2, 3, 4]. However, for the huge data, the
traditional application of wavelet transform is less considering
parallelism, which will cause long time for transform. The GPU
is an attractive platform for a broad field of applications, because
it still remains a significant high arithmetic processing capability
and is often less utilized. Therefore it can be used as a powerful
accelerator without extra cost [5]. These platforms make it
possible to achieve speedups of an order of magnitude over a
standard CPU in many applications and are growing in popularity
[6, 7].

Moreover, several programming toolkits such as CUDA [8]
have been developed to facilitate the programming of GPUs for
general purpose applications. There are previous works to
compress data by using a graphics-specific programming
language, but currently most of the proposals to compression on
a single GPU are based on the CUDA programming model.
Although the use of single GPU systems makes it possible to
satisfy the performance requirements of several applications,
many applications require huge meshes, large numbers of time
steps and even real time accurate predictions. These
characteristics suggest to combine the power of multiple GPUs.

One approach to use several GPUs is based on programming
shared memory multi-GPUs desktop systems. These platforms
have been used in fluid dynamic [9] and shallow water [10, 11]
simulations by combining shared memory programming
primitives to manage threads in CPU and CUDA to program the
GPU. However, this cost-effective approach only offer a reduced
number of GPUs (2-8 GPUs) and more flexible systems are
desirable. A more flexible approach involves the use of clusters

Geomorphometry.org/2013 Fei and YuMin

 O-4-2

of GPUs-enhanced computers where each node is equipped with
a single GPU or with a multi-GPUs system. The computation on
GPUs clusters could make it possible to scale the runtime
reduction according to the number of GPUs. Thus, this approach
is more flexible than using a multi-GPUs desktop system and the
memory limitations of a GPUs-enhanced node can be overcome
by suitably distributing the data among the nodes, enabling us to
simulate significantly larger realistic models and with greater
precision. The use of GPUs clusters to accelerate intensive
computations is gaining in popularity [12, 13, 14, 15, 16, 17].
Most of the proposals to exploit GPUs clusters use MPI [18] to
implement inter process communication and CUDA [19] to
program each GPUs. A common way to reduce the remote
communication overhead in these systems consists in using non-
blocking communication MPI functions to overlap the data
transfers between nodes with GPUs computation and CPU-GPU
data transfers.

In this work, an implementation of DWT compression to the
raster DEM is developed for a GPUs cluster by using MPI and
CUDA. The outline of the article is as follows: Section 2
summarizes the background to DWT compression and provides
an introduction to MPI-CUDA. In Section 3 we provide the main
details of our parallelization strategy for the DWT compression
using MPI-CUDA. Experimental results are analyzed in Section4.
Finally, Section 5 summarizes the work and concludes the paper.

II. THE COMPRESSION OF DEM

A. DWT by CUDA

The DWT of image signals produces a non-redundant image
representation, which provides better spatial and spectral
localization of image information as compared to other multi-
resolution representation [20]. For an input represented by a list
of 2n numbers, the Discrete wavelet transform may be considered
to simply pair up input values, storing the difference and passing
the sum. This process is repeated recursively, pairing up the sums
to provide the next scale: finally resulting in 2n−1 differences
and one final sum. The describe of the DWT is in Eq.1 and Eq. 2.
 () is the original pending signal data; () is the

approximation coefficient; () is the accurate coefficient; is
the low-frequency filter; is the high-frequency filter.

 () ∑ () () ()

 () ∑ () ()

 ()

The DWT for an image as a 2D signal will be obtained from
1D DWT. We get the scaling function and wavelet function for
2D by multiplying two 1D functions. This may be represented as
a four channel perfect reconstruction filter bank as shown in Fig.
1. Now, each filter is 2D with the subscript indicating the type of
filter (HPF or LPF) for separable horizontal and vertical
components. By using these filters in one stage, an image is
decomposed into four bands. There exist three types of detail

images for each resolution: horizontal (HL), vertical (LH), and
diagonal (HH).

The operations can be repeated on the low low (LL) band
using the second stage of identical filter bank. Thus, a typical 2D
DWT, used in image compression, generates the hierarchical
structure shown in Fig. 2.

Fig. 1. One Filter Stage in 2D DWT

Fig. 2. Structure of wavelet decomposition

B. Rarallel Run-length Code by CUDA

This section presents the parallel VLE (Virtual Learning
Environment) algorithm for General Purpose GPU with hardware
support for atomic operations. The parallel variable-length
encoding consists of the following parallel steps: (1) assignment
of code words to the source data, (2) calculation of the output bit
positions for compressed data (code words), and finally (3)
writing (storing) code words to the compressed data array. In the
first step, variable-length code words are assigned to the source
data. The code words can be either computed using an algorithm
such as Huffman, or they can be predefined, e.g. as it is
frequently the case in image compression implementations.
Without loss of generality, we can assume that the code words
are available and stored in a table. This structure will be denoted
as the code word look-up table (code word LUT). Each entry in
the table contains two values: the binary code for the code word,
and code word length in bits, denoted as a (cw, cwlen) pair. Our
implementation uses an encoding alphabet of up to 256 symbols,
with each symbol representing one byte. During compression,
each source data symbol (byte) is replaced with the
corresponding variable-length code word.

C. MPI-CUDA

NVIDIA SLI technology can be used to connect multiple
GPUs that are in one computer and as of the latest release of the
CUDA sdk, all those SLI (Scalable Link Interface) connected
GPU cards can only be seen as one single GPU by the
programmer. But we can connect GPU cards in different
computers using Ethernet and exploit CUDA+MPI model so that
it enables the user to see different GPUs in different computers as
separate processing engines. Hence the programmer can execute
different kernels in one application on different GPUs at the same
time.

Geomorphometry.org/2013 Fei and YuMin

 O-4-3

CUDA is the programming language provided by NVIDIA to
run general purpose applications on NVIDIA GPUs. The CUDA
incorporates an Application Programmer Interface, a runtime,
couple of higher level libraries and a device driver for the
underline GPU.

MPI provides a standard set of subprogram definitions which
allow parallel programs to be written using a distributed memory
programming model to allow more than one process to perform
computations on a given set of data copies of this data must be
sent to any process which requires it (to be saved on that
process’s memory). This is referred to as message passing.

D. System design

We successively overlap computations with inter-node and
intra-node data exchanges to better utilize the cluster resources.
All the implementations have much in common, with differences
in the way data exchanges are implemented. We show that
implementation details in the data exchanges have a large impact
on performance.

For all implementations, one MPI process is started per GPU.
Since we must ensure that each process is assigned a unique GPU
identifier, an initial mapping of hosts to GPUs is performed. A
master process gathers all the host names, assigns GPU
identifiers to each host such that no process on the same host has
the same identifier, and scatters the result back. At this point the
cuda SetDevice()call is made on each process to map one of the
GPUs to the process which assures that no other process on the
same node will map to the same GPU.

These kernels implement the computation steps of the solver
in the GPU, and do not require any modification for use in the
multiple GPU implementation. We added the use of constant
memory to support runtime model configuration while
maintaining efficient GPU memory accesses to this common data.
A temperature kernel was added and the momentum kernel
changed to apply the buoyancy effect.

III. RESULTS AND DISCUSSION

A. Experimental Platform

All experiments are done using both CPU and MPI-CUDA.
The configurations for them are listed in Table 1 and Table 2.
The experiment requires some software and tools for
programming and documenting purpose: CUDA SDK 4.2\VS
2010\ Nsight Visual Studio Edition 2.2.

TABLE I. DEVICE CONFIGURATION AT EXPERIMENT

Feature Specification

Name GeForce GT 650M

CUDA Driver
Version

4.2

MPI MPICH2-1.0.1

Feature Specification

Total Global memory 2048M

#Multiprocessor 2

#Cores 384

TABLE II. TABLE 2: HOST MACHINE CONFIGURATION AT EXPERIMENT

Feature Specification

System Model Y480 Notebook

Operating Systerm Windows xp

Manufacture Lenovo

Processor Intel(R) Core(TM) i5-3210M

Memory 4096MB RAM

B. Experimental Data

 For test the different performance of the CUDA-based DWT

compression, we use srtm_57_05 images (Fig.3) ranging from

256*256 to 6000*6000.

Fig. 3 srtm_57_05 Image

C. Experimental Result
To evaluate the proposed method, we examined each

execution time of the DWT on a CPU and MPI-CUDA. The
program for the CPU is implemented in C++ language. Every
image makes the DWT on a CPU and MPI-CUDA. The
execution time of the GPU is much less than the time taken on
the CPU: we can see that when the image is small (256*256) the
time spends on the both devices is almost the same. It is due to
the fact that the data transfer overhead (from CPU to MPI-CUDA
and vice versa) in case of small image size mitigating the parallel
execution effects. For larger data sizes, the speedup obtained by
the parallel operations take over the data transfer overheads and
hence the performance gain becomes more obvious. With
resolution’s increase, the MPI-CUDA’s accelerator is more
obvious (from 1.2 to 20.8). The speed-up ratio increase, when the
image size becomes larger. It shows that the larger image the

Geomorphometry.org/2013 Fei and YuMin

 O-4-4

more efficiency of the MPI-CUDA DWT compression. So the
experiment has proved the MPI-CUDA can be used to improving
the speed of DWT compression to dem. By using the GPU for
decoding, the CPU is free for other tasks like prefetching and
data management. We validated these statements by integrating
the compression and decoding schemes into a terrain rendering
system, and we showed that high visual quality on high-
resolution displays is possible at interactive frame rates.

 D. Discussion

In this paper, we present a MPI-CUDA accelerated DWT
compression for images method using the CUDA and MPI. We
realized significant improvement in runtime (speedup to 20.8),
with imperceptible degradations of quality. Although this
experiment has verified that MPI-CUDA parallel computation on
GPUs significantly increases the speed of the discrete wavelet
transform, much work remains to be done. The DWT method
based on CUDA has many places to improve, for example, using
the texture memory (it will be fast) to translate the data.
Moreover, the DWT compression is only one step of DEM
processing, the method should be used in some DEM processing,
such as DEM realtime display. By using the GPU for decoding,
the CPU is free for other tasks like prefetching and data
management. We will validate these statements by integrating the
compression and decoding schemes into a terrain rendering
system, and show that high visual quality on high-resolution
displays is possible at interactive frame rates.

ACKNOWLEDGMENT

The research is supported by the National Nature Science
Foundation of China (No: 41171347).

REFERENCES

[1] Wan Gang, Zhu Changqiang, 1999. “Application of multi-band wavelet on
simplifying DEM with lose of feature information”. Acta Geodaetica et
Cartographica Sinica, 28 (1): 36-40p.

[2] Wu Lun, Liu Yu, Zhang Jing, 2001. “Principle of geographic Information
system”. Beijing: Science Press, in press.

[3] Chang Zhanqiang, Wulixin. Montanic, 2004, “grid DEM data compression
based on wavelet transform and mixed entropy coding”. Geography and
Geo-Information, 20(1): 24-27p.

[4] NVIDIA Tutorial at PDP08, “Cuda: A new architecture for computing on
the gpu”, 2008.

[5] J.D. Owens, S. Sengupta, and D. Horn, “Assessment of Graphic Processing
Units for Department of Defense Digital Signal Processing Applications”,
Technical Report, ECE-CE-2005-3, Computer Engineering Research
Laboratory, University of California, Davis, October 2005.

[6] M. Rumpf, R. Strzodka, 2005, “Graphics Processor Units: New Prospects
for Parallel Computing”, in: Numerical Solution of Partial Differential
Equations on Parallel Computers, Vol.51 of Lecture Notes in
Computational Science and Engineering, Springer, 89–134p.

[7] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips, 2008,
GPU computing, Proceedings of the IEEE 96 (5), 879–899p.

[8] NVIDIA Corporation, NVIDIA CUDA C Programming Guide 3.2, 2010.

[9] W.-Y. Liang, T.-J. Hsieh, M. T. Satria, Y.-L. Chang, J.-P. Fang, C.-C.
Chen, C.-C. Han, 2009, “A GPU-Based Simulation of Tsunami
Propagation and Inundation”, in: Proceedings of the 9th International
Conference on Algorithms and Architectures for Parallel Processing,
ICA3PP ’09, Springer-Verlag, Berlin, Heidelberg, 593–603p.

[10] J. Thibault, I. Senocak, 2010, “Accelerating incompressible flow
computations with a Pthreads-CUDA implementation on small-footprint
multi-GPU platforms”, The Journal of Supercomputing, 1–27p.

[11] M. Geveler, D. Ribbrock, S. Mallach, D. G, 2010, “A Simulation Suite for
Lattice-Boltzmann based Real-Time CFD Applications ExploitingMulti-
Level Parallelism on modern Multi- and Many-Core Architectures”,
Journal of Computational Science In Press, Accepted Manuscript.

[12] M. L. Saetra, A. R. Brodtkorb ,2010, “Shallow water simulations on multi-
ple GPUs”, Proceedings of the Para 2010 Conference, Lecture Notes in
Computer Science.

[13] D. A. Jacobsen, J. C. Thibault, I. Senocak, 2010, “An MPI-CUDA
Implementa-tion for Massively Parallel Incompressible Flow
Computations on Multi-GPU Clusters”, in: The 2009 High Performance
Computing & Simulation- HPCS’09.

[14] D. Komatitsch, G. Erlebacher, D. G öddeke, D. Mich éa, 2010, “High-
order finite-element seismic wave propagation modeling with MPI on a
large GPU cluster”, J. Comput. Phys. 229, 7692–7714p.

[15] D. Komatitsch, 2011, “Fluid-solid coupling on a cluster of GPU graphics
cardsfor seismic wave propagation”, High Performance Computing, 125–
135p.

[16] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, 2004, “GPU Cluster for
High Performance Computing”, in: Proceedings of the 2004 ACM/IEEE
con-ference on Supercomputing, SC’04, IEEE Computer Society.

[17] Y. Zhang, F. Mueller, X. Cui, T. Potok, 2011, “Data-intensive document
clustering on graphics processing unit clusters”, J. Parallel Distrib. Comput.
211–224p.

[18] R. Abdelkhalek, H. Calendra, O. Coulaud, J. Roman, G. Latu, 2009, “Fast
Seis-mic Modeling and Reverse Time Migration on a GPU Cluster”,
in:The 2009 High Performance Computing & Simulation-HPCS’09,
Leipzig Allemagne, Best Paper Award at HPCS’09 Total.

[19] NVIDIACorporation,CUDAZone,http://www.nvidia.com/object/cudahome
new.html.

[20] M.Atallah, S.Kosaraju, L.Larmore, G.Miller, S.Teng, 1989, Constructing
trees in parallel. In: Proceedings of the first annual ACM symposium on
Parallel algorithms and architectures, pp. 421–431. ACM, New York.

app:ds:processing
app:ds:display

