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Abstract— The use of derivatives in geomorphometry is 

reviewed.  For first and second derivatives (slope and 

curvatures) of the land surface, represented by a 

square-grid DEM, use of a quadratic based on nine 

points is recommended.  For detailed analysis of slope 

gradient, maximum slope (based on two points) may be 

useful: but only if the DEM is very accurate.  For 

curvature, streamline (rotor) curvature should be 

added to profile and plan curvature.  The system of 

local point-based variables in the gravity field is now 

extended to third derivatives. 

1. INTRODUCTION: HISTORY 

The importance of slope gradient in geomorphological 

processes and the description of land surface form has long 

been recognized (Young, 1972; Parsons, 1988).  

Traditionally it was measured directly in the field along 

profiles, using clinometers, levels or pantometers.  This 

involved problems of sampling (Young, 1972) and the 

ground length over which it is to be measured: Pitty (1969) 

favoured the fixed slope length given by a 1.52 m 

pantometer, giving a ‘human scale’.  Also, subtle 

differences can be observed between up-slope and down-

slope measurements.  Methods of measuring curvature 

tangential to the slope profiles were developed by Young 

(1972).  Slope gradient was measured also from contour 

spacing on maps, and generalized maps of gradient were 

produced from contour density, e.g. counting contour 

intersections with a grid. 

The calculation of derivatives from gridded height data 

was pioneered by geophysicists (e.g. Šalamon, 1963).  

This was applied to gridded models of the land surface by 

Tobler (1969). Geophysicists also began consideration of 

the land surface as a scalar field, and systematic 

application of methods of mathematical analysis, a 

significant theoretical shift which was developed further 

by Krcho (1973). Drawing on the earlier work of Tobler 

and W.A. Wood, Evans (1972) demonstrated the value of 

derivatives in geomorphology, and attempted to simplify 

at-a-point geomorphometric variables in terms of two 

components (gradient, aspect) of the first derivative and 

two (plan and profile curvature) of the second.  He showed 

their sensitivity to scale, represented by DEM grid mesh.  

Further work has dealt with various measurement scales or 

transformations for gradient and curvatures as distributed 

over areas.  The value of all these derivatives has been 

amply confirmed, and their importance increases as new 

applications are found.  Mitášová and Hofierka (1993) 

redefined plan and profile curvatures on the base of 

differential geometry theory (inverting the 

geomorphological sign convention), and more components 

of curvature have been added (Jenčo, 1992; Shary et al. 

2002).  Numerous variant definitions of curvature have 

complicated matters, reducing the simplification originally 

desired.  Nevertheless, consistency of definition is highly 

desirable for a science to advance by making 

measurements which are comparable. 

 

2. CALCULATION OF SLOPE  

(GRADIENT AND ASPECT) 

Currently there is competition as to the value of different 

definitions, and debate about how variation with scale (or 

degree of generalisation) should be handled.  For gradient 
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calculation from gridded DEMs, I suggest that both very 

local (D8: 2-point, 8-direction, maximum-slope), and 

slightly smoothed (9-point quadratic, omni-directional) 

values, are valuable – assuming data are sufficiently 

accurate.  Onorati et al. (1992) illustrated differences 

between three methods for slope, for a 230 m grid of Italy, 

and chose a 3-point method.  Zhou and Liu (2004) 

compared six methods for two mathematical surfaces, and 

demonstrated the desirability of using 8 points rather than 

4 or 3: weighting by distance made little difference.  

Although 2-point gradients (using steepest descent from 

the central point to any of the eight ‘Queen’s case’ 

neighbours) are very sensitive to data error, they do make 

full use of DEM detail and preserve the range of values, 

which is reduced by all methods that use more than 2 

points.  Conventionally the gradient is attributed to the 

source (central, upslope) grid point: if it were placed 

accurately, half-way between the two points, the resulting 

gradient values would be unevenly distributed, on an 

incomplete grid (with many holes).  Fitting exact planes to 

each set of three adjacent  points makes all directions 

(aspects) possible, rather than just eight ‘cardinal points’ 

of the compass, but the results relate to new points in the 

centres of the two sets of triangles produced from a square 

grid.  Fitting planes to four points already involves some 

generalization of the DEM, and the results relate to new 

points displaced by half the grid mesh.  Fitting to five 

points (a central point and four closest neighbours, ‘rook’s 

case’) increases generalization but does provide results at 

each of the original data points.   

 

3. CALCULATION OF SLOPE AND CURVATURES 

None of these (2, 3, 4 or 5 point algorithms) gives reliable 

estimates of surface curvature.  This is why Evans (1980) 

adopted a full quadratic (6-parameter) equation fitted to 

nine points (3 x 3).   Tests by Skidmore (1989), Eyton 

(1991), Guth (1995), Florinsky (1998) and Schmidt et al. 

(2003) have demonstrated the advantages of this method 

over several alternatives, even though it inevitably 

smooths sharp breaks.  Wise (1998) also showed the 

advantages of the nine-point quadratic, especially for 

aspect estimation (n.b. slope is estimated from 8 points: 

the central point is used only for curvatures).  The 

quadratic provides better results for gradient (Florinsky, 

1998) and for curvatures (Schmidt et al., 2003) than a 9-

parameter partial quartic.  Once error in the DEM is 

admitted, it seems undesirable to constrain the surface to 

pass through the central point, as this is affected by error 

as much as are the other eight.  There may, however, be a 

case for weighting the central point more, and the corner 

points less, than the other four.   Conversely, some 

algorithms use eight neighbours and ignore the central 

point, which seems perverse.   

Shary et al. (2002) have suggested routinely fitting over 5 

x 5 points, to smooth the errors in contour-based DEMs.  

The degree of smoothing should be related to the degree of 

DEM error: I suggest basing this on the ratio of standard 

error of altitude to the mean difference between adjacent 

points.  We await calibration of the desirable degree of 

smoothing as a function of this ratio: it is probably best to 

smooth as necessary first, before fitting the nine-point 

quadratic.   

Guth (1995) demonstrated that use of all eight neighbours 

reduced mean gradients to 78% of those from the ‘steepest 

adjacent neighbour’ (i.e. two-point) algorithm.  This is 

roughly equivalent to the reduction when grid mesh is 

doubled. 

Reference to the direction of gravity
1
 distinguishes the use 

of derivatives in earth sciences, as distinct from broader 

mathematical schemes, although Shary et al. (2002) have 

demonstrated the use of principal curvatures.  Evans 

(1980) used the 6-parameter quadratic as the basis for 

implementation of a 5-variable system of local point-based 

variables in the gravity field: altitude, slope gradient, slope 

aspect, profile curvature and plan curvature.  Inevitably 

this attempt to simplify general geomorphometry has been 

followed by extension to greater complexity (Olaya, 

2009), and it is clear that several additions are necessary 

(Evans and Minár, 2011).  Improved computing 

capabilities permitted the very desirable extension to flow-

line related positional variables (not dealt with here).  For 
                                                           

1
 We generally assume that a land surface can be 

represented as a (single-valued) function, z = f(x,y), with 
the z-axis parallel to the direction of gravity (e.g. Mitášová 
& Hofierka, 1993).   
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local variables, the most obvious omission was the third 

curvature variable: curvature of any surface in 3 

dimensions can be completely characterised by three 

orthogonal variables, but there are many alternative trios 

of definition.  If we keep profile and plan curvature 

(because of their clear relation to surface processes), the 

third curvature may be termed ‘rotor curvature’ (Florinsky, 

1998) or ‘streamline curvature’ and describes the curvature 

of streamlines or the divergence of contour lines (Shary et 

al., 2002; Peckham, 2011).  Tangential curvature, in a 

plane orthogonal to the surface and the flow line, is less 

useful because it is closely related to plan curvature 

(Peckham, 2011), especially on low gradients. 

 

4. TRANSFORMATIONS OF  

FREQUENCY DISTRIBUTIONS 

For most types of statistical analysis, it is important to 

check the shape of the frequency distribution of each 

variable.  These vary between areas, even between 

adjacent areas (Minár et al. 2013).  The venerable and 

developing literature on hypsometry shows that altitude 

can be right-skewed or left-skewed, so no single 

transformed scale will fit all study areas.  Slope gradient in 

degrees or tangents is more often right- (positively-) 

skewed, so logarithmic transformation is appealing 

(Speight, 1971).  This is because, even in mountain 

regions, deposition in fans, floodplains and lakes produces 

extra areas of low gradient.  Where these are absent, 

however, distributions may be symmetrical or, where high 

relief pushes gradient toward a limiting value for slope 

stability, negatively skewed (Oguchi et al., 2011).  

For real-world DEMs, the distribution of curvatures 

measured in degrees per unit length (100 m in Evans 1980) 

is always strongly peaked at the mode of zero.  The 

presence of extremely positive and negative values can 

greatly bias calculation of product-moment correlations. 

(In profile convexity these extremes represent sharp breaks 

and concentrate in high-gradient areas; in plan convexity, 

they are not just across sharp channels and ridges but also 

on floodplains, where aspect is almost indeterminate.)  To 

solve this, I have applied arctangent transformations to 

‘bring in’ both tails.  Unfortunately these require 

calibration of a constant multiplier, k: 

Transform = arctan (k . convexity) 

k is chosen so as to minimise kurtosis, originally a rather 

clumsy trial-and-error process.  Note that kurtosis on the 

negative side of normal (toward a rectangular distribution) 

is not usually a problem, as it is outliers or extreme values 

(long tails) that bias correlations and related statistics.  

Alternatives to the arctangent are the use of other sets of 

curvatures (would tangential or maximum and minimum 

curvature avoid the floodplain problem?) or of robust 

statistics, but it is hard to find applications of those 

approaches. 

 

5. THIRD DERIVATIVES 

First and second derivatives seemed adequate to cover 

applications in geomorphology up to 1980, but the work of 

Florinsky (2009) and of Minár et al. (2013) has now 

demonstrated several applications for the third derivative.  

Data unreliability has been the main deterrent to their use 

as yet, but this is improving and better computation 

techniques have been devised.  These third derivatives are 

valuable in delimiting surface objects (such as elementary 

forms, forms homogeneous in one or more derivatives) 

and testing their tendency to a constant value of some 

derivative.  Minár et al. (2013) show that as higher 

derivatives are taken, they concentrate increasingly around 

zero, as predicted by the concept of elementary forms.  

The increase is greater than for random or ‘fractal’ 

surfaces.  Note, however, that as further derivatives of real 

land surfaces are taken, the resulting surfaces are rougher 

and rougher, unlike those of mathematically-defined 

polynomial surfaces.  One promising application of third 

derivatives arises because, while zero values of tangential 

changes are widespread for both profile and tangential 

curvature, they coincide only on (sharp) ridges and valleys 

and both conditions are needed in delimiting these. 

 

6. CONCLUSION 

The system of first and second derivatives of land surface 

altitude in the gravity field has proved robust, popular and 

useful over the last four decades, and extended to the third 

derivative it should remain a cornerstone of general 

geomorphometry for decades to come.  Applications are 
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legion (Hengl and Reuter, 2009), and increasing as DEMs 

at the fine scales relevant to surface processes become 

available.  Uses for field-invariant variables, a further 

extension, have been proposed by Shary et al. (2002) and 

we hope to see numerous applications in future.  

Alternative systems for the analysis of rough surfaces, 

such as spectral and fractal analyses, are more difficult to 

implement in practice and to interpret.  In fact our ability 

to differentiate representations of the land surface suggests 

that it cannot be truly fractal, as fractal surfaces are non-

differentiable.  With their more direct meaning – rates of 

change – derivatives remain intuitively appealing.  
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