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Abstract—Current sampling methods require a large number of 
samples to account for spatial variation of  environmental 
covariates, which often conflicts the available financial resources. 
Thus, efficient sampling strategies are desirable. The aim of this 
study was to evaluate the potential of land-surface segmentation in 
stratifying a landscape into homogeneous areas, which can be used 
as support in optimizing soil sampling. The experiments were 
carried out in a study area where soil samples were available. 
Land-surface variables were derived from DEMs and segmented 
with a multiresolution segmentation (MRS) algorithm, into objects 
considered as homogeneous soil-landscape divisions. Thus, one 
sample was randomly selected within each segment, based on which 
predictions of the A-horizon thickness and soil types, were made. 
Predictions based on the land-surface segmentation sampling 
schemes outperformed predictions based on simple random 
sampling and conditioned Latin hypercube, respectively. 

 INTRODUCTION 
Spatial resolutions of soil maps for about 70 % of the Earth’s 

ice-free land surface are too low to help with practical land 
management [1]. Conventional survey methods involve too 
much resources to be cost-effective in high-resolution soil 
mapping. Digital Soil Mapping (DSM) is an appropriate 
framework for producing detailed soil maps based on 
quantitative relationships between soil properties or types and 
their ‘environment’ [2]. Efficient sampling designs play an 
important role in DSM [2], as they have a significant impact on 
the accuracy of the maps [3]. 

Classical sampling methods (e.g. simple random sampling, 
systematic sampling and stratified sampling) as well as the 
model-based sampling strategy require a large number of 
samples to account for the spatial variation of environmental 
variables [4]. As sampling is constrained by financial resources, 
efficient sampling strategies are desirable [5]. Increasingly 
available geospatial information (e.g. satellite imagery, geology 

maps, Digital Elevation Models (DEMs) can be exploited as 
environmental covariates to optimize sampling locations [5] 
within the framework of a soil-landscape model [6]. However, 
sampling with support of environmental covariates has not been 
fully developed in DSM [5]. A number of recent papers [e.g. 4, 
7, 8] demonstrated the value of purposive mapping based on 
such covariates in producing more accurate predictions by using 
fewer, but more representative samples. 

Land-surface segmentation (LSS) is a relatively new 
technique to partition land-surface variables (LSVs) obtained 
from DEMs into contiguously homogeneous areas in 
multivariate feature space [9]. The most popular segmentation 
algorithm is Multiresolution Segmentation (MRS) as 
implemented in the eCognition® software [10]. The algorithm 
merges spatially contiguous pixels or cells into segments based 
on local homogeneity criteria [10]. The resulting land-surface 
objects incorporate scale, spatial autocorrelation, anisotropy and 
non-stationarity in their definition of homogeneity [11]. There 
have been only a few attempts to map soils based on LSS. The 
only approach of segmentation to optimize soil sampling [12] 
showed that a segmentation-based sampling (SBS) scheme 
produced better distribution of sampling locations over the area 
of interest, as compared to simple random sampling and regular 
sampling schemes. 

It is clear that the potential of LSS to DSM  has not been fully 
employed and the applicability of this technique to optimize soil 
sampling has only been touched upon. Therefore, we aimed at 
evaluating the potential of LSS in stratifying a landscape into 
homogeneous areas, which can be used as support in optimizing 
soil sampling.  

METHODS  
The experiments were carried out in the administrative 

territory of Branisca, which is located in western part of 
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Romania. The study area extends over 78 km2 in a hilly region 
with altitudes between 165 and 670 m. Over 95 % of the area 
has slope gradients below 30 degrees. The bedrock consists of 
limestone, sandstone, igneous and sedimentary rocks. Three soil 
classes are widely developed, namely cambisols, luvisols and 
protisols. A 30 m SPOT-based DEM and a spatial database 
containing 93 records were available.  

LSVs were derived from DEMs and segmented with a MRS 
algorithm, into objects considered as homogeneous soil-
landscape divisions. Thus, one sample was randomly selected 
within each segment, based on which prediction of the 
dependent variables (thickness of A-horizon and soil classes) 
were made. Results were compared with predictions based on 
other sampling schemes, namely simple random sampling (SRS) 
and conditioned Latin hypercube (cLHS) [5]. The methodology 
is shown in Fig. 1. 

Land-surface variables 
Four LSVs, i.e. slope, plan curvature, profile curvature and 

topographic wetness index (TWI) were selected as potential soil 
covariates. For slope and curvatures, scale optimization was 
conducted according to [13]. Regressions between dependent 
variables and LSVs derived in increasing windows (using 
LandSerf) were conducted. The scales where the regression 
peaks emerged were retained for further analyses. The LSVs 
scaled as above and TWI were used for identification of the best 
predictors, with linear forward stepwise regression for thickness 

of A-horizon and logistic forward stepwise regression for soil 
class respectively. 

Land-surface segmentation 
For both dependent variables, six segmentations were 

performed with the MRS algorithm, in the eCognition 8.8 
software. Three of them represent the three segmentation levels 
obtained from the application of the tool (named PT throughout 
the paper) presented in [14], using only the elevation layer as 
input. 

The other three schemes were obtained using an improved 
version of the Estimation of Scale Parameter (ESP) tool [15], 
based on the best predictors identified as above. Thus, for the A-
horizon thickness, segmentation process was based on slope 
derived in a 5x5 window and TWI. For soil classes, 
segmentation was performed on profile curvature (9x9 window) 
and slope (5x5 window). 

Sampling schemes 
The dataset was divided into two parts: 20 % of samples as 

control points for validation and 80 % as training points. The 
SBS schemes resulted by randomly selecting one sample per 
object out of the training points for each dependent variable and 
segmentation scheme. The other two sampling schemes, SRS 
and cLHS, were created using the same number of samples as in 
the object based-sampling.

Figure 1.  Flow chart showing the main steps of the experiment. 
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Soil mapping and accuracy assessment 
Segmentation schemes were evaluated through their ability 

of accurately mapping soils. Thus, for each sampling scheme  in 
Tables 1 and 2, maps of soil variables and classes were created 
using the sample-based inference engine implemented in the 
SoLIM Solutions 2010 software [16]. The agreement between 
maps and the reference data were assessed with standard 
methods: 1) overall accuracy and kappa index of agreement for 
soil classes; and 2) RMSE, agreement coefficient, mean absolute 
error and mean error for the A-horizon thickness.  

RESULTS AND DISCUSSION 
Segmentation produced between 11 and 40 homogeneous 

areas with the PT tool, and 6 to 22 with the ESP tool (Tables 1 
and 2). As expected, accuracies improved with the number of 
samples for all sampling methods. However, the SBS performed 
consistently better than SRS and CLHS. 

Predictions of the A-horizon thickness with SBS yielded the 
highest agreement coefficients (AC in Table 1), and the lowest 
RMSEs (except for PT 1, where cLHS was slightly better) and 
MAEs (except for PT 1 and 2, where cLHS was better). All 
SBSs produced results comparable with predictions that used the 
entire population of training samples. This includes the scheme 
with 6 samples (about 11 % of total). The other two methods 
produced less reliable results at the same number of samples, as 
shown by considerably lower AC values. The best results were 
achieved with the SBSs at the finest levels (PT3 and ESP3) of 
the two segmentation methods (Table 1). 

Predictions of the soil classes with SBS outperformed SRS 
and cLHS in all cases but ESP3, where cLHS gave better results 
(Table 2). PT3 was the only sampling scheme that achieved 
results similar to those obtained with the entire population of 
training samples. These results were obtained with about 62 % 
of training samples. The other two methods produced 
significantly poorer predictions (kappa of 0.2 and 0.3 
respectively). Interestingly, segmentations on the DEM alone 
(PT1 to 3) produced significantly better results (Table 2) than 
segmentation on the slope and profile curvature (ESP1 to 3), 
which predicted well the distribution of cambisols, luvisols and 
protisols in the study area. This might be due to the conflicts 
between homogeneity in profile vs. gradient (e.g. 
convexities/concavities have homogeneous profile, but 
heterogeneous gradient). 

The good performance of SBS in optimizing soil sampling 
stems from the ability of LSS of delineating objects that 
maximize internal homogeneity and external difference. 
Conceptually, SBS can be seen as a particular case of purposive 
mapping [7], where the appropriate samples can be estimated 
within areas of homogeneous LSVs, which are delineated with 

the aid of segmentation instead of fuzzy c-mean classification. 
The results presented here agree with previous findings [4, 7] on 
improving the accuracy of soil mapping with limited samples.  

When guided by local variance, LSS self-adapts to the scale 
of local variability in the LSVs, with additional benefits of 
accounting for spatial autocorrelation, anisotropy and non-
stationarity [11]. To check the impact of non-stationarity on 
analyses, an additional  test was performed with Geographically 
Weighted Regression (GWR) [17]. The samples obtained with 
SRS where employed for mapping the A-horizon thickness, 
using the same covariates as in the other predictions. Results 
always improved significantly (Table 1), which clearly shows 
the importance of local models in predicting soil properties.  

TABLE I.  ACCURACY ASSESSMENT OF THE A-HORIZON PREDICTIONS 
BASED ON DIFFERENT SAMPLING METHODS 

Sampling method 
 

 No.a RMSE ACb MAE ME 

 
PT1c 

SRS 11 14.82 0.47 11.38 5.35 
GWRd 11 10.64 0.72 9.01 3.99 
SBS 11 11.95 0.75 9.65 0.19 
cLHS 11 11.52 0.63 9.33 - 1.85 

 
PT2 

SRS 14 13.92 0.72 11.45 3.41 
GWR 14 10.33 0.77 8.71 - 0.92 
SBS 14 10.41 0.79 9.10 - 3.17 
cLHS 14 11.03 0.74 8.35 3.21 

 
PT3 

SRS 31 11.54 0.73 10.27 - 1.36 
GWR 31 9.82 0.77 8.59 - 0.32 
SBS 31 8.84 0.85 6.61 - 2.97 
cLHS 31 10.28 0.84 8.67 3.00 

 
ESP1 

SRS 6 15.79 0.37 12.75 2.52 
GWR 6 10.72 0.53 8.60 0.84 
SBS 6 12.65 0.69 10.00 2.37 
cLHS 6 15.88 0.56 11.57 3.27 

 
ESP2 

SRS 8 15.67 0.27 11.87 1.76 
GWR 8 12.65 0.61 11.78 - 1.28 
SBS 8 11.25 0.71 9.37 - 1.16 
cLHS 8 12.21 0.69 9.63 - 3.46 

 
ESP3 

SRS 15 12.29 0.74 8.70 - 0.65 

GWR 15 8.83 0.79 7.77 - 2.65 

SBS 15 8.73 0.86 7.49 - 1.15 

cLHS 15 10.79 0.82 7.77 5.88 

All training samples (80 %) 56 11.11 0.72 9.24 0.38 
a. Number of samples. b. Agreement Coefficient. c.PT1 to 3- the three segmentation levels obtained with 

the PT tool; ESP1 to 3- the three segmentation levels obtained with the ESP tool. d. GWR was used for 
mapping based on the SRS samples 
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TABLE II.  ACCURACY ASSESSMENT OF THE SOIL CLASSES PREDICTIONS 
BASED ON THREE SAMPLING METHODS 

Sampling method 
 No. OA KIA 

 
 
 

PT1 

SRS 12 0.25 - 0.05 

SBS 12 0.38 0.09 

cLHS 12 0.25 - 0.01 
 
 
 
PT2 

SRS 15 0.31 0.05 
SBS 15 0.50 0.23 
cLHS 15 0.38 0.11 

 
 
 
PT3 

SRS 40 0.44 0.20 
SBS 40 0.63 0.45 
cLHS 40 0.50 0.30 

 
 
 
ESP1 

SRS 10 0.25 - 0.06 
SBS 10 0.31 0.07 
cLHS 10 0.25 - 0.04 

 
 
 
ESP2 

SRS 13 0.25 - 0.05 
SBS 13 0.31 0.05 
cLHS 13 0.31 0.01 

 
 
 
ESP3 

SRS 22 0.38 0.09 
SBS 22 0.38 0.15 
cLHS 22 0.44 0.14 

All training samples (80 %) 65 0.63 0.45 
 

In this case, GWR successfully substituted a poor sampling 
design by accounting for non-stationarity, which is a built-in 
capability of LSS. 

In conclusion, SBS showed a high potential in optimizing 
soil sampling in the study area. The two SBS methods 
performed better than SRS and cLHS in predicting the A-
horizon thickness and the soil classes. SBS would enable the 
reduction up to 11 % in the number of samples neccesary to 
predict the A-horizon thickness, and up to 62 % to predict soil 
classes. This methodology could be effective in reducing costs 
of soil surveys. The analyses presented here further highlight the 
importance of considering locally adaptive techniques in 
optimization of sampling schemes and predictions of soil 
properties. 
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