
Geomorphometry.org/2011 Gorini and Mota

Which is the best scale?
Finding fundamental features and scales in DEMs
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Abstract—A method is presented to explicitly incorporate scale in 
geomorphometric analyses. It is based on Wood's 1996 method for 
morphometric feature extraction, but enhances it by fuzzifying its 
extraction  function,  automatically  parameterizing  it  and  locally 
limiting  the  maximum  scale  of  analysis.  As  a  result,  maps  of 
fundamental features and scales are produced, which describe well 
the overall topography of DEMs, as well as its multi-scale nature. 
The method was applied to diverse DEMs and compared to fixed-
scale and modal feature approaches. Multi-scale geomorphometric 
variables  were  also produced and evaluated.  The results  suggest 
that  the method allows thorough unsupervised  geomorphometric 
characterizations of DEMs, stimulating further research.

I.  INTRODUCTION 

It  is  widely  accepted  that  a  single  scale  of  analysis  is 
insufficient  for  accurate  description  or  characterization  of  a 
landscape  [1].  In  terms  of  geomorphometry,  this  multi-scale 
character is even more emphasized by the fact that all measures 
vary  with  the  scale  of  analysis  [2],  thus,  exhibiting  a  scale 
tendency.  If  parameters  and  objects  vary  with  scale,  it  is 
acceptable  to  regard  landforms  as  vague  objects  [3][4]. 
Moreover,  this  scale  vagueness  sums  itself  up  with  spatial 
vagueness because of the continuous distributions of features and 
values  over  space.  However,  this  “double  vagueness”  in 
geomorphometry is rarely investigated [5].

The  existing  approaches  to  deal  with  scale  in 
geomorphometric  analysis may be considered on a continuum, 
where the level of incorporation of scale increases as the number 
of approaches decreases. The de facto standard is the sole use of 
the inherent scale of the data. Next in the continuum, some kind 
of  a  priori knowledge  or  statistical  analysis  defines  a  single 
better fixed scale to use. Improved approaches derive parameters 
and/or features in a number of predefined scales and use some 
kind  of  statistical  summary  to  produce  usable  morphometric 
maps  [6][7].  In  this  kind  of  analysis,  scale  fuzziness  is  an 
inherent  concept.  A  few  other  approaches  analyze  scale 
signatures  globally  in  search  for  characteristic  scales  or 
thresholds  [8][9].  On  the  rarest  end  of  the  continuum,  scale 

breaks are used to derive spatially-varying scale maps [10][11]. 
The  spatial  vagueness  of  geographic  objects;  however,  is  not 
incorporated in these works. 

Our  conclusion  is  twofold:  (i)  scale  effects  are  poorly 
recognized  in  digital  terrain  analysis  and;  (ii)  the  double 
vagueness of landforms is even less investigated.  Therefore, our 
main objective is also twofold: (i) to present an improved method 
to  incorporate  scale  in  geomorphometry  and;  (ii)  to  use  the 
inherent double vagueness of objects as its working core.

We hypothesize  that  the  analysis  of  the  scale  tendency  of 
fuzzy  feature  memberships  enables  the  identification  of  the 
fundamental features and scales of DEMs. In order to accomplish 
that,  we  build  upon  Wood's  1996  method  of  morphometric 
feature  extraction  [6],  further  developing  it  in  three  ways:  by 
fuzzifying its extraction function, automatically parameterizing it 
and locally limiting the maximum scale of analysis.

II.  METHOD

A. Fuzzifying Wood's Method

A fuzzy  classification  system is  created  based  on  Wood's 
original nine rules, each of which now result in a different class 
and is assigned an approximate geomorphographic term, namely, 
pit, channel, hollow (sloping channel), pass, ridge, spur (sloping 
ridge), peak, plane or slope (sloping plane). Crisp thresholds are 
replaced by fuzzy concepts modeled by fuzzy sets (Fig. 1), as in 
[12].  The  antecedents  of  each  rule  are  then  combined  by  the 
fuzzy  operator  AND to establish a  membership  map for  each 
feature. The highest membership can then be used to determine 
the extracted morphometric feature at each location.

Figure 1. Fuzzy sets for slope and curvature.
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B. Automatic Parameterization of Fuzzy Sets

For a successful  classification, fuzzy sets must be properly 
parameterized, so that they can reflect the inherent relationships 
between  concepts  and  the  resultant  features.  Also,  since 
geomorphometric  properties  vary  with  scale,  so  should  fuzzy 
sets.  Therefore,  we  calculate  the  mean  slope,  mean  negative 
cross-sectional  curvature  and  mean  positive  cross-sectional 
curvature of a given DEM and use these values as starting points 
to obtain an adaptive parameterization of fuzzy sets.

However,  proper  parameterization  is  hampered  by the  fact 
that flat areas shift the mean slope and mean curvature towards 
lower values. As a solution, the mean slope is used as input to 
functions of the form y=ae(-x/b)+c that were designed by trial-and-
error to provide percentages to be applied to the means, so that 
increasingly higher parameters are applied to flatter DEMs (Fig. 
2). The result is an automatic procedure that adapts the feature 
extraction function for any DEM in any scale.

Figure 2. Parameterization functions and example calculation of parameters C2 
and C4. See Fig. 1 for reference.

C. Establishing the Maximum Scale of Analysis

This nine-class fuzzy system is then run over multiple scales 
by increasing the local window of calculation until either (i) a 
plane  feature  is  extracted  after  a  non-plane  feature  or  (ii)  the 
classification stability is lost (Fig. 3).

The reason for the first scale constraint is to avoid loosing 
meaningful information. When plane features are extracted after 
non-plane  features,  they  are  considered  as  an  obliteration  of 
smaller-scale features and, therefore, disregarded in the analysis.

We also further restrict scales by analyzing the classification 
stability. As scale increases, an undulating pattern of intercalating 
moments of classification stability and confusion is formed (Fig. 
3). These “waves” represent dominant scale ranges, whereas their 
boundaries  identify  specific  scales  where  fundamental 
morphometric  changes  take  place.  In  order  to  automatically 
identify these boundaries, we find the scales where classification 
stability  is  lost.  A  classification  is  considered  stable  when  it 
produces features exhibiting a small confusion index [13] over a 
significant number of consecutive scales.  By trial-and-error we 
defined  a  confusion  index  of  0.6  and  4 consecutive  scales  as 
adequate thresholds. Fig. 3 demonstrates the complete analysis. 

Figure 3. Identification of the maximum scale of analysis (red vertical line).

In the example displayed, the classification becomes stable 
and then loses stability three times, identifying a total of three 
scale ranges until a plane feature is extracted. For the purpose of 
an unsupervised assessment, we consider the use of only the first 
range of scales as the best compromising approach.

D. Finding Fundamental Features and Scales

After having defined the local range of scales to analyze, we 
can derive the multi-scale fuzzy feature memberships hi, given by

hi= ∑
∀ s≤smax

g i s×w s/ ∑
∀ s≤smax

w s , (1)

where gi(s) is the fuzzy feature membership for each i of the set 
C of nine features in every scale  s,  smax is the local maximum 
scale of analysis and w(s) is a weight applied to each scale (kept 
constant in the analysis).

The  highest  multi-scale  fuzzy  membership  determines  the 
fundamental feature, whereas the fundamental scale is simply the 
one  that  best  represents  the  entire  distribution  of  fundamental 
feature fuzzy memberships, i.e., its centroid.

III. THE EXPERIMENT

In  order  to  test  its  general  applicability,  the  method  was 
applied to five DEMs of varying resolutions, data sources and 
spatial extents (Tab.1). No preprocessing was applied to any of 
the DEMs, which are all freely available on the Internet1.  The 
entire method was implemented through a GRASS-Shell script 

1   http://www.gebco.net; http://pds.jpl.nasa.gov/; http://www.geomorphometry.org
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that  needs  nothing  but  a  DEM  as  input.  Due  to  inherent 
limitations of the underlying GRASS modules, the local window 
of calculation was set to a maximum of 69x69 cells.

    TABLE I.         MAIN PROPERTIES OF DEMS USED IN THE ANALYSIS.

MOLA
DEM

GEBCO_
08

Baranja Hill Ebergotzen Fishcamp

Data source
Satellite 
altimetry

Satellite 
altimetry / 
soundings

Topographic 
maps

Topographic 
maps

LIDAR

No of cells 393,848 750,836 21,903 160,000 320,000

Cell size (m) 7,000 1,000 25 25 5

IV. RESULTS AND DISCUSSION

A.  Fundamental Features and Scales

Instead  of  providing  extensive  geomorphological 
descriptions,  our  main  focus  here  is  to  evaluate  the  proposed 
method in  contrast  to  more  common approaches,  namely,  the 
choice of one single fixed-scale to analyze; and the use of modal 
morphometric  maps.  As such,  we  derived  confusion  matrices 
between  the  fundamental  maps  and  all  fixed-scale  and  modal 
maps generated by scales ranging from 3x3 up to 69x69. 

The resultant kappa index trends in the fixed-scale analysis 
show peaks that tend to cluster around scale 13x13 (Fig. 4 left). 
This  indicates  that  the  fundamental  maps  are  biased  toward 
smaller  scales,  thus,  capturing  most  of  the  significant  features 
without, however,  keeping much noise. As scale increases,  the 
discrepancies  also escalate,  being more pronounced in rougher 
DEMs due to excessive obliteration of non-plane features, which 
is contained in our approach by the adaptive parameterization.

The modal analysis, in turn, shows the majority of maximum 
kappas around scale 23x23 (Fig. 4 right). However, high kappa 
values were spread out among a larger number of scales, being 
less sensible to them. This suggests that there are many choices 
of maximum scales able to generate comparable results between 
the modal and fundamental approaches. Note, however, that all 
experiments  were  carried  out  with  automatically  generated 
parameters, contrasting with the original modal approach.

Figure 4.  Kappa index trends with scale.

The oblique views of the Baranja Hill DEM depicted in Fig. 5 
allow further evaluation of the results. The proposed approach, as 
well as the detected global  scales (maximum kappas),  produce 
morphometric  maps  that  tend  to  be  in  good  agreement  with 
subjective visual assessments of the overall topography, attesting 
for the unsupervised character of the method. 

Fig. 5 also brings the corresponding fundamental scale map, 
showing that larger features were coherently assigned to larger 
scales  (darker  shades  of  gray).  Examples  are  seen  in  the 
continuous drainage divides, drainage channels and some point 
features, such as hill passes. In addition to the considered scales, 
a total  of four scale ranges was identified in all studied DEMs; 
however, an average of 83% of each DEM presented only one 
range, justifying the choice of the first stability loss as the local 
maximum scale of analysis. 

Also,  although  capturing  detail,  the  analysis  was  able  to 
identify  fundamental  scales  up  to  61x61  and  local  maximum 
scales  as  high  as  69x69.  While  modal  maps  generated  by 
considering these scales denote progressive loss of information, 
the  spatially-varying  detected  scales  allow  one  single  map  to 
gather  as  much  information  as  possible  from  diverse  scales 
simultaneously. The lack of need to choose a limited range of 
scales  to  analyze  further  emphasize  the  objective  and 
unsupervised character of the method. 

Also obtained in the proposed analysis is a complete set of 
fuzzy  maps  that  comprise  nine  feature  membership  maps  for 
every  scale,  nine  multi-scale  feature  membership  maps  and  a 
multi-scale  confusion index map. All  of them together capture 
the inherent double vagueness of landforms, enabling a thorough 
assessment of the multi-scale nature of DEMs that is unlikely to 
be achieved by crisp or fixed-scale approaches. 

Figure 5. Comparison of morphometric feature maps of the Baranja Hill DEM.
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B. Multi-scale Geomorphometric Variables

As stated in [10],  the detection and delineation of spatially 
adaptive  scales  can  not  only  improve  the  classification  of 
landforms, but also lead to improved approaches in calculating 
surface derivatives. With this motivation, new geomorphometric 
variables were derived by a simple map algebra algorithm. It uses 
the fundamental scale map as a guide to locally select values that 
correspond to  the  appropriate  scales.  Following this  approach, 
Fig. 6 shows a multi-scale slope map as compared to fixed-scale 
maps of local 3x3 and regional 35x35 scales. 

The highlighted areas  (black  squares)  show that  the multi-
scale map combines information from different scales. When the 
fundamental scale map indicates local scales (lighter shades) and 
detail is necessary, it resembles the 3x3 map; when coarser scales 
dominate, the resultant map is smoother, locally adapting to the 
detected scales and, hopefully, to the actual geomorphology. We 
consider these results as truly multi-scale versions of the original 
variables.  Although  more  in-depth  studies  are  required,  we 
believe these maps should be preferable to any single fixed-scale 
map or even to statistical summaries based on multiple scales, as 
far as an unsupervised characterization of topography is desired.

Figure 6. Multi-scale slope map of the Fishcamp DEM.

V.  CONCLUSION 

When a general geomorphometric assessment of a surface is 
needed,  parameters  and objects are usually extracted using the 
sole inherent scale of the data.  However,  the amount of scale-
based relationships seen in the results of this paper and in the 
many  others  that  influenced  it  show  that  this  approach  is 
insufficient, if not bound to erroneous conclusions. If nothing or 
little  is  known beforehand  about  a  surface,  how come we  so 
carelessly  use  a  fixed-scale  approach?  Geomorphology  and 
specially geomorphometry are, in its essence, multi-scale.

With this motivation, our work has presented an unsupervised 
method to identify the fundamental features and scales of DEMs. 
We have considered the inherent double vagueness of landforms 

by applying fuzzy reasoning in every scale  per se and also in a 
multi-scale sense. Fuzzy sets were parameterized automatically 
and the maximum scale of analysis was determined in a cell-by-
cell basis, locally adapting to the actual topography. The result 
was a general  and transferable method able to characterize the 
multi-scale geomorphometry of very discrepant DEMs.  

Despite  a  number  of  associated  shortcomings,  such  as  the 
artificial limit of 69x69 cells imposed, we believe this effort is in 
the  right  direction  towards  a  more  thorough  approach  to 
geomorphometry, one that not only takes into consideration scale 
effects, but one that treats scale as an inherent dimension of any 
data. As such, the most important aspect in efforts like this one is 
not as much to reach an answer to the research question, as it is to 
simply keep it in mind:

Which is the best scale?
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