
Geomorphometry.org/2011  Bock and Leyk 

  133 

Scale-Specific Modeling of Class-Level Uncertainty in 

Landform Taxonomies Using Fuzzy Sets 

Andrew Bock and Stefan Leyk 

Department of Geography 

University of Colorado-Boulder 

Boulder, Colorado 

Andrew.bock@colorado.edu 

Stefan.leyk@colorado.edu 

 

 

Abstract— A multi-scale geomorphometric landform system 

was created through the use of fuzzy semantic import models 

and fuzzy overlay to measure distribution of landforms 

within parcels of the Conservation Reserve Program in 

Northeast Kansas, United States. The uncertainty and 

stability of landform classes was measured by calculating the 

area proportions covered by these classes at varying levels of 

classification entropy across different scales.  Within each 

scale (defined here as search radius), the landform classes 

backslopes and flats had the highest proportional 

representation of all classes at most entropy levels (defined 

by values greater than or equal to 0.95, 0.90, 0.85, and 0.75, 

respectively). At the highest entropy level (0.99) the class 

proportions were more variable. This is important as both 

backslopes and flats showed dominant proportions of total 

area at different scales (backslopes at finer scales, and flats at 

coarser scales) within CRP Parcels. The presented approach 

allows an improved implementation of landform models by 

incorporating an uncertainty assessment and sensitivity 

analysis for a variation of spatial scales. 

I. INTRODUCTION 

The magnitudes of many hydrological, geomorphologic, and 
biological processes active in the landscape are sensitive to 
topographic position [7]. Terrain attributes are the basis for 
identifying elementary landform units (in systems known as 
landform taxonomies), which in turn are important to the study of 
these processes. Although easy to conceptualize cartographically, 
common “crisp” models of landform units ignore inherent 
variations in the landscape and transitional states between two or 
more classes. This can result in fragmented or chaotic spatial 
patterns, limited flexibility to adjust for different types and scales 
of landforms, and thus a lack of generality across different 
landscapes [6].  Most current approaches of landform 

classification are specific to a particular scale or a narrow range 
of scales and ignore scale effects [10]. Thus there exists a need to 
incorporate scale-specific variations of landform units in order to 
address the levels of uncertainty as has been demonstrated for 
e.g., fuzzy land cover classes [3]. 

Uncertainty in common spatial representations of landforms 
can be characterized in different ways: (a) Precise boundaries of 
crisp landform representations assume that all important change 
occurs at designated boundaries ignoring gradation and 
transitions in the landscape; (b) The range of surface 
measurements used to parameterize location, and thus the extent 
of landform objects and classes varies with changing scale; (c) 
Landforms are defined by inherently vague linguistic or semantic 
concepts such as “rolling”, “flat”, or “hilly” [6].  Consequently, 
the two forms of uncertainty in landform representations that can 
be identified for a specified scale are vagueness and ambiguity. 
Ambiguity implies that a single location may relate to different 
classes under varying classification schemes [4]. Vagueness 
refers to a lack of distinctness between ill-defined or fuzzy 
classes of objects or individual objects and often links to 
linguistic concepts [5].  Accounting for vagueness and ambiguity 
at a specified scale and across different scales is essential in 
maintaining the generality and applicability of landform 
taxonomies to various landscapes and paradigms.   

      This research examines the effect of scale-specific charach-

teristics of geomorphometric classes on the resultant taxonomy 

using a fuzzy set approach. The presented model identifies prop-

ortions of geomorphometric classes and regions of highest class-

ification confusion as well as measures of classification stability 

for each location across different scales. In a case study we dem-

onstrate how this model could be used to improve reliability of 

soil and vegetation mapping at scales related to field or parcel-

specific agronomic and natural resource management decisions. 

We use parcel data of the Conservation Reserve Program (CRP), 
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a voluntary cropland retirement program for the Delaware River 

Basin in Northeast Kansas using 10-meter resolution DEMs. 

II. BACKGROUND:  SCALE AND UNCERTAINTY IN 

LANDFORM TAXONOMIES 

Most existing geomorphometric systems are Boolean in 
nature. The resulting units contain maximum internal 
homogeneity and external heterogeneity - a paradigm referred to 
as the „double-crisp‟ model, which is easy to conceptualize 
cartographically, but ignores ambiguity and imprecision as 
addressed earlier [1].  Modeling landforms without understanding 
the inherent uncertainty within each class can cause error 
propagation.  Class-level uncertainty is well-studied in fields of 
remote sensing and land cover/land use, but has received limited 
attention in geomorphometry [2, 9].  The level of uncertainty 
may vary across landform classes that compose a single 
taxonomy. Some of the classes can be more crisp or more fuzzy 
or ambiguous than others depending on underlying terrain 
attributes or definitions used.  This illustrates a need for creating 
generic techniques to quantify uncertainty for landform objects 
derived from DEMs.  

One unresolved question in landform models is how to 
quantify and represent uncertainty across scales.  The range of 
scales over which landforms are characterized represents a more 
theoretical, and essentially a geographical problem: information 
and relationships derived at one scale can change as the scale 
changes [10].  Two ways scale has been accounted for in 
landform taxonomy  are the calculation of surface parameters 
used to define landform classes over a range of window sizes or 
changing the underlying DEM resolution [10].  How uncertainty 
in landform taxonomies varies between classes has been 
relatively ignored. 

III. METHODS 

A. Workflow 

      To account for scale, different window sizes ranging from the 
DEM resolution (10 m) to the maximum window size (100 – 200 
m) were used to create a fuzzy set-based landform taxonomy.   A 
simplified fuzzy landform system  consisting of six classes  was 
derived [8] (Fig. 2). We (1) calculated terrain attributes and 
converted them to fuzzy semantic constructs that characterize 
semantic landforms for each scale [6], (2) carried out fuzzy 
overlay to compute fuzzy surfaces of each landform class across 
different scales, and created defuzzified (crisp) landform classes, 
and (3) examined classification stability across scales based on 
different entropy levels. 

B. Terrain attributes and fuzzy semantic import 

      Landforms were semantically characterized based on specific 
terrain attributes that allowed the development of a suite of 

quantitative characteristics composing each landform class. Land 
surface parameterization was carried out using Evan‟s second-
order polynomial method and surfaces of terrain attributes were 
calculated for multi-scale surface characterization with a 
combination of customized algorithms in Python, MATLAB, and 
R [10].  

      Fuzzy set theory overcomes weaknesses of crisp 
classifications by accounting for soft class boundaries due to 
inherent ambiguity and vagueness as parts of the landscape 
structure.  Each location in the landscape can be a partial member 
to one or more landform classes indicated by continuous degrees 
of membership in the range [0,1], with 1 equal to a prototypical 
or full membership, and 0 equal to non-membership.  Within this 
study, we utilize fuzzy semantic import (SI) models to convert 
terrain attributes to fuzzy set memberships on a continuous scale 
[0,1] in a defined fuzzy set [6]. The SI models were based on 
first-order polynomials as fuzzy membership functions (Fig. 1). 

      The membership functions were parameterized using existing 
definitions and statistical distributions of the terrain attributes 
over the study area. The resulting fuzzy sets were used to model 
semantic constructs for the different landforms; each location 
(pixel) was given a membership to each semantic construct of 
each terrain attribute for each scale (Table 1, Fig. 2). 

C. Fuzzy overlay and defuzzification 

      Fuzzy overlay of semantic constructs was performed to 
derive fuzzy surfaces of different landform classes using the 
fuzzy logic intersect operator (MIN operator). The theoretical 

 
 

Fig. 1.  Representation of  a single terrain attribute (slope) with multiple semantic 
constructs using first-order polynomial semantic import functions. 
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TABLE 1. TERRAIN ATTRIBUTES AND THEIR SEMANTIC 
CONSTRUCTS 

Terrain Attribute Construct 

Elevation Percentile (1) Highness 

  (2) Lowness 

Slope (3) Steepness 

  (4) Flatness 

Tangential Curvature (5) Tan. Convexity 

  (6) Tan. Concavity 

Profile Curvature (7) Profile Convexity 

  (8) Profile Planarity 

  (9) Profile Concavity 

Relative Profile Curvature (10) - Balanced 

  (11) Balanced 

  (12) +Balanced 

 

 
Fig. 2.  Geomorphometric classes and their semantic constructs which are 

used to describe landforms. 

basis for the application of this operator is the limiting factor 
principle of ecology [8].  Six fuzzy landform class layers were 
created for each scale (36 surfaces in total), with cell values 
indicating the degree of membership to a particular class.  To 
derive a final, crisp layer of six landform classes, defuzzification 
was conducted. An overlay operation was applied to the six fuzzy 
landform layers utilizing the maximum of membership (MOM) 
method for each location (Fig. 3) [11].  At each location the 
landform class with the highest membership value was selected 
to define the crisp class; this procedure was repeated for each 
scale. 

D. Analysis of stability and entropy 

      To determine the ambiguity and stability of specific land-

form classes across scales, a method incorporating the use of 

both crisp and fuzzy landforms was developed. First, the degree 

of classification uncertainty (or confusion) was measured at each 

location for each scale using classification entropy, a derivation 

of the Shannon-Weiner Diversity Index [1].  Next, the 

proportions of MOM-based crisp landform classes that fell 

within specific ranges of entropy were determined. 
A semantic landform class was considered ambiguous or 

unstable if high area proportions can be found at locations of high 
entropy. The ranges of entropy values utilized were ≥0.75, ≥0.85, 
≥0.9, ≥0.95, and ≥0.99. Thus locations of each crisp landform 
class that spatially corresponded with entropy values equal to or 
greater than each threshold level were extracted  (Fig. 4). This 
procedure was carried out for each scale. 

IV. RESULTS 

Within each scale, the crisp (defuzzified) classes backslopes 
and flats were the ones that showed the highest proportions of 
areas with entropy levels 0.75 – 0.95. At the entropy level 0.99 
the class proportions were more variable (Figure 5).  Over the 
entire study area, the proportion of backslopes gradually 
decreased with coarser scale, the one of flats increased, with 
inconsistent trends in the other four classes.  This finding is in 
line with the conception of backslopes as the transition between 
uplands (crests and shoulderslopes) and lowlands (footslopes and 
flats). 

 

 
Fig. 3.  Six fuzzy landform surfaces as input to the Maximum of Membership 

(MOM) defuzzification method to create a single layer of crisp landform classes. 
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Fig. 4.  Locations at different entropy levels (shown in black) at 0.95 (left), 

0.85 (center), and 0.75 (right) underlain a CRP parcel (green hatched polygon).  

 

Fig. 5.  Proportions of crisp (defuzzified) landform classes at varying levels of 
entropy and for different scales in the sudy area (shown for 9-cell and 121-cell 

window sizes). 

This result is interesting since the total area of both classes - 
backslopes and flats - were dominant at different scales 
(backslopes at finer scales, and flats at coarser scales) within 
CRP parcels and in the entire study area.  Spatial overlay of the 
resulting landform classes and related uncertainty by CRP units 
at different scales allowed the evaluation of individual parcels 
from a new perspective:  in addition to landform proportions at 
each scale the proportions of unstable locations defined by 
entropy levels could be analyzed.  For backslopes it could be 
shown that the class-specific area proportion was higher within 
CRP parcels than in the entire study area.  Therefore, in the 
context of a specific land cover or land use (here CRP) there may 
be a higher potential for misclassification i.e., higher instability 
of large proportions within CRP units, based simply on the 
occurrence of classes and their frequency within it. 

IV. DISCUSSION AND CONCLUSIONS 

The presented consistent relationships (Fig. 5) can be 
construed in several ways: (1) The semantic classes backslopes 
and flats could truly be interpreted as transitional classes, in that 
backslopes act as the transition between uplands and lowlands 
area (sediment detachment and sediment deposition); flats act 
primarily as the transitional zone between slopes and drainages, 
the area of the highest level of hydrologic activity; (2) Areas of 
highest uncertainty (0.99-level entropy locations) appear to be 
less tied to specific classes but more to specific locations of high 
instability, due to high variation in the land surface. The 

corresponding class proportions deviate from patterns shown at 
other levels of entropy, and are independent of scale; (3) The 
same locations at the highest level entropy may be also 
independent of the overall uncertainty of the classification system 
and more a result of artifacts from DEM processing or 
measurement [10].  However the fact that the same effect can be 
observed consistently across all scales casts some doubt on the 
latter point.   

An important outcome from this study is the improvement of 
scale-specific landform mapping by incorporating uncertainty 
information.  By accounting for inherent uncertainty i.e., 
vagueness and ambiguity using a fuzzy set approach, it was 
possible to determine that some classes in a geomorphometric 
hillslope model are naturally unstable independent of the scale of 
analysis.  The exemplified application to CRP parcels showed 
that the high level of inherent uncertainty in crisp representations 
of some landform classes such as backslopes and flats could have 
serious consequences for decision-making regarding land 
retirement of erosion-susceptible units based on topographic 
position. The presented approach would thus have considerable 
potential for improving land management, conservation practices, 
or ecological modeling efforts.  
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