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1. Introduction 
The planet Mars has a relatively short human exploration history, while the size of the 
scientific community studying Mars is also smaller than its Earth equivalent. On the 
other hand the interest in Mars is large, basically because it is the planet in the solar 
system most similar to Earth. Several satellites are currently orbiting Mars, and 
transmit data back in unprecedented detail. In fact, the Martian surface is mapped at up 
to 5 times higher resolution than the bottom of the ocean here on Earth. 

The scientific community studying Mars has already made great discoveries 
concerning, for example, the variability of the surface (Bibring, 2005), and the 
presence of water. To learn more about the history of the surface and about the planet 
as a whole, data generated by different satellite missions will have to be combined. 
Processing such large, multi-attribute datasets at a global Martian scale requires 
efficient automated classification methods.  

The use of automated classification in combination with geomorphometric data has 
only recently been possible on Mars with the creation of the global Mars Orbiter Laser 
Altimeter (MOLA) digital elevation model (DEM) (Smith et al. 2003), as obtained  
between 1997-2001 by the Mars Global Surveyor. (Bue and Stepinski, 2006) 
demonstrated the potential of classifying global MOLA DEM data and concluded that 
similar methodology could be applied on other data sets like the ~60m spatial 
resolution DEM, as currently under construction  from High Resolution Stereo Camera 
(HRSC) images collected by ESA's Mars Express (Gwinner, 2007). 

On Earth, morphological classification has been used for numerous specific 
applications (Guzetti and Reichenbach, 1994; Hosokawa and Hoshi, 2001). Also only 
relatively recent it was demonstrated that attributes like gradient and roughness, as 
derived from elevation data, can be used to construct a multi-attribute feature vector, 
that, possibly in combination with other data, like intensity or multi-spectral data,  can 
be consecutively applied in land surface and vegetation classification procedures (e.g. 
Antonorakis et al., 2008; Bork and Su, 2007; Chust et al., 2008). 

Even though the use of automated classification on Martian datasets has great 
potential, it is not yet being used as intensively by the scientific community studying 
Mars. The research presented in this abstract therefore formalises the methodology 
presented by Bue and Stepinski (2006) as the Terrain Fingerprinting Method (TFM) in 
Section 2. We have applied the TFM to several areas on Mars based on the MOLA 
DEM, which has a maximum spatial resolution of 400 meters per pixel; HRSC DEM, 
which has a maximum resolution of 50 meters per pixel; and a combination of the 
MOLA DEM with data from the Mars Express mineralogical spectrometer (OMEGA). 
The present abstract focuses on an analysis of the combination of OMEGA and MOLA 
DEM data as presented in Section 3. 
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2. The Terrain Fingerprinting Method 
The Terrain Fingerprinting Method consists of 5 steps that closely follow the steps a 
geoscientist takes when he or she analyses a terrain.  

Step 1: Defining the research question 
The first step requires the scientist to define the research area and the type of terrain to 
be analysed. This is exactly how a scientist starts researching a terrain on Earth; first 
selects a region to analyse and then he decides what research questions need to be 
answered about that region – or vice versa. 

Step 2: Choosing the attributes 
The next step requires the expert to describe how the terrain would be analysed if it 
was analysed by hand. For example, to categorise a certain region into different 
geological units a geoscientist would look at terrain attributes including slope, 
elevation, terrain roughness, and  rock colour to determine where the geological units' 
boundaries lie. 

Step 3: Converting unprocessed data 
The next step is to translate the attributes found in the previous step into a computer 
readable format. This involves converting unprocessed satellite data of the region to be 
studied to data read by GIS software, and finally deriving the required attributes; for 
example creating slopes from elevation data. 

Step 4: Clustering data 
In the supervised terrain classification, this step would involve manually classifying 
the terrain with GIS software. This step is replaced by an automated classification 
method. This research uses a combination of a partitive clustering technique (Self-
organising Maps, Kohonen, 2001) and a hierarchical clustering technique (Ward 
clustering, Ward, 1963) to create a fingerprint of the terrain analysed automatically, 
see section 2.1. 

Step 5: Analysing and validating results 
The final step in the TFM is also very similar to the final step in the manual process. It 
includes validating, analysing, and interpreting the classification made by the 
automated classification. 

2.1. Automated Classification of Landforms 
Classification schemes can generally be divided into two categories: hierarchical and 
partitive clustering. In hierarchical clustering, each data point can be seen as being on 
the end of a twig on a tree, which is part of a branch, which connects to the tree. The 
more two twigs are set apart, the more dissimilar the two points of data are. 

This way of classifying is very useful for smaller datasets. However, as each data 
point corresponds to a twig, the classification tree, and therefore the storage and 
processing power, grows with every point of data. 

On the other hand, partitive clustering does not look at each individual data point; it 
tries instead to look at the dataset as a whole to find clusters. To continue the analogy, 
partitive clustering tends to ignore the twigs of the tree and only look at the branches. 
One of the disadvantages of this approach is that it is more difficult to distinguish 
between clusters that are closer together. 
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When classifying large areas of terrain and/or terrain at a high resolution, the 
number of data points grows very fast. To still be able to classify these terrains, while 
avoiding the disadvantages of the single methods, a combination of the partitive and 
hierarchical clustering techniques can be applied. Vesanto (2001) has shown the 
feasibility of this technique. 

The present research uses self-organising maps (Kohonen, 2001) to create an initial 
mapping of the original data to a lower number of proto-vectors. These proto-vectors 
are then clustered using so-called Ward clustering (Ward, 1963) to bring them down to 
20 classes. 

3. Results 

To design and validate the Terrain Fingerprinting Method we have applied it to several 
different use-cases. This section describes each of the TFM steps for one of the use-
cases. 

 
Research question: The research question for area A is whether the area contains 

terrain that is on one hand safe to land on for a rover such as ExoMars, whilst on the 
other hand the terrain is also interesting from a scientific point of view. In this case 
safe is defined using the characteristics given in Table 1; and being interesting is based 
solely on whether there are indicators for phyllosilicates1 in the OMEGA data. 

This particular area—around the Mawrth Vallis—was chosen because it is known 
for its high phyllosilicates content and its possible suitability as a landing site for 
NASA's Mars Science Laboratory (Michalski, 2008). 
 

Characteristic Lower Bound Upper Bound 
Elevation [m] - -1000 
Slope [°] 0 2 

Table 1. Primary safety characteristics for ExoMars. 
 

Attributes: To classify the terrain by hand into safe, unsafe, and interesting units, it 
was agreed that there were 5 relevant attributes: 
                                                 
1 Phyllosilicates are considered to be an indicator of the past presence of liquid water; ExoMars 

scientific and exploration goals are to find traces of past and/or present life; since life as we know it 
requires, among other things, the presence of liquid water, we assume that evidence of 
phyllosilicates will indicate an interesting region. 

Figure 1. The area analysed in this research. 
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1. Elevation:  to distinguish between low and high; 
2. Slope:   to identify crater walls and cliffs; 
3. Filled Difference2: to identify craters; 
4. Filled Slope3:  to distinguish crater walls and cliffs elsewhere; and 
5. Phyllosilicates: to identify interesting terrain, based on Pelkey (2007). 

 
Unprocessed data: The classification is based on a set of OMEGA images that 

covered the region, all of which had approximately the same resolution of 1000 meters 
per pixel. 

The file was read into GRASS (GRASS Development Team, 2008) and the attributes 
were generated using the following GRASS routines: 

1. Elevation:  - 
2.  Slopes:   r.slope.aspect 
3.  Filled Difference: r.terraflow and r.math 
4.  Filled Slope:  r.terraflow and r.slope.aspect 
5.  Accumulation:  r.terraflow 

 
Clustering data: Figure 2a shows a close up of part of the elevation data on which 

the previously discussed attributes were based. The final classification result is shown 
in Figure 2b. At the bottom, each colour can be seen to correspond with a class, and 
the classes are grouped according to their relative distances and the clustering 
algorithm.  
 

Analysis: The groups indicated in the legend of Figure 2b can also be visually 
identified in the mapping of the classification: group 1 can be identified on the higher, 
southern terrain; group 2 fills up the spaces between group 1 and the craters of the said 
highlands; group 3 can be identified as craters; group 4 is located in the northern 
lowlands; and group 5 is found in the area between the lowlands and the highlands. 

In order to verify these claims, Table 2 summarises the attribute means for each 
group. The first row shows the means for the attributes over the entire area of study, 
this can be used to compare the values of the other groupings. 

The final column in this table shows the amount of phyllosilicates in the group. 
According to Pelkey (2007) only levels above 0.02 indicate the presence of this 
mineral group on that location. None of the groups in Table 2 show this level, though 
the values in the table represent a mean over an area. When compared to the mean of 
all groupings, groups 4 and 5 show above average phyllosilicate levels. 

It can be concluded from the data given in Table 2 that groups 4 and groups 5 
potentially identify terrain types that are both safe and interesting; with the latter being 
more interesting as it has a higher phyllosilicates content. 
 

                                                 
2 Filled difference is an attribute generated by using a fill algorithm to make lakes out of all the craters 

and blocked channels, finally the `filled difference' attribute is the difference between this map of 
lakes and the real elevation map; thus generating domes where craters are located. 

3 The filled slope attribute is generated by creating a slope map from the `map of lakes' created in the 
filled difference attribute procedure. 
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Groups 
Area 
[%] 

Elevati
on [m]

Fill. 
Diff. 
[m]

Fill. 
Slope 

[°]
Slope 

[°]
Phyllo. 

[-] 
All 100 -2507 233 0.83 2.08 0.00383 
1 24 -2008 21 2.52 3.43 0.00368 
2 38 -2058 135 0.14 1.21 0.00127 
3 13 -3216 1221 0 3.42 0.00193 
4 12 -3736 94 0.2 1.01 0.00775 
5 8 -2727 19 0.73 1.25 0.00871 

Table 2. Attribute means for different groups in area A. 

4. Conclusions 
Bue and Stepinski (2006) used MOLA data to create an automated classification of 
Martian terrain. The present research has looked at how their methodology can be 
formalised to appeal to the broader planetary science community, and how it can be 
applied to other types of data. 

As can be deduced from the process description above, the steps taken for the TFM 
are almost identical to those taken for a terrain classification done by hand. The 
fingerprint produced in step 4 of the TFM is the key difference. The terrain fingerprint 
produced can for instance be used to: 

 perform an initial terrain classification on an area to quickly identify the 
primary terrain classes, which can be used as input for a manual classification; 

 locate terrains elsewhere on the surface that have the same fingerprint and 
could therefore be similar terrains; 

 use a classification made for one area and apply it to a different area to quickly, 
and consistently classify this new area with the same classes as the original 
area; and 

 translate a classification made manually by an expert to a computer readable 
terrain fingerprint and apply it consistently to other areas. 

 
The most challenging TFM step is the one where the list of attributes is created. 

During manual terrain classification a geoscientist combines many attributes, including 
interpretations from previous terrains. More research is required to turn these more 
`interpretive' attributes into attributes that the computer can understand. 

Another property of TFM—and of analysing datasets of Mars in general—is that 
combining the different datasets into a single frame of reference requires many 
processing tools and steps. Scaling the analysis to cover larger swathes of terrain will 
therefore require investigations on how to optimally load the unprocessed data. 

Another often-heard criticism about the automated classification method is that the 
results are not similar enough to how a geoscientist would interpret the terrain. One 
way to circumvent this criticism is to use a manual terrain classification as the basis for 
the fingerprint. 
 

In the course of the present research we have identified several items for further 
research. Due to the lack of ground-truth on Mars it will be important to validate TFM 
on Earth with terrestrial geoscientists. 
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It is expected that using geostatistical methods considering both cross-correlation 
between attributes, and spatial correlation within one attribute, will further optimise 
the distinction between different terrain types. Moreover the use of geostatistical 
methods provides a framework to combine datasets with different spatial point 
densities and/or individual point qualities. 

 

Figure 2. a)  MOLA elevation data of area A; b)  Classification made with TFM. 
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