
145

Hybrid implementation of evaluation of primary

topographic parameters using GPU-accelerated clusters

Przemysław Stpiczyński, Dominik Szałkowski

Department of Computer Science, Institute of Mathematics

Maria Curie-Skłodowska University, Lublin, Poland

przem@hektor.umcs.lublin.pl, dominisz@umcs.lublin.pl

Leszek Gawrysiak, Łukasz Chabudziński

Department of Earth Sciences and Spatial Management

Maria Curie-Skłodowska University, Lublin, Poland

leszek.gawrysiak@umcs.pl, lchabudzinski@gmail.com

Abstract—The aim of this paper is to present an efficient method

for parallelizing computations of primary topographic parameters

like aspect, slope, and curvature for very large data sets using

clusters with GPU-accelerated nodes. We outline the

implementation and discuss the results of experiments, which

justify the use of such computer architecture.

I. INTRODUCTION

Topographic parameters and indicators are the essential part
of the spatial data analyses, which are used to show dependencies
between various components of the natural environment. The
parameters, which are obtained from the digital elevation model
(DEM), are also used to describe terrain properties in a
quantitative way. Parameters like slope, aspect, and curvature are
called primary topographic parameters and they are directly
computed from the DEM. The topographic position index,
topographic wetness index, stream power index, and roughness
are called secondary topographic parameters and they are derived
from the primary ones. The values of the parameters represent
important properties of the surface, which in turn determines the
behavior of hydrologic, geomorphologic, and ecologic processes.

For the last twenty years the size of the GIS data to process
have been constantly growing together with the complexity of
computations needed to perform spatial analyses (Healey et al.,
1997). There are some papers concerning the use of standard
multiprocessor architectures for GIS related tasks (Huyaji W. et
al., 2011, S. H. Han, 2009, F. Huang, 2011, X. Guan, 2009) as
well as surveys of utilizing parallel capabilities of new
architectures of general purpose GPUs (Graphics Processing
Unit) (Osterman, 2012). However, there are no studies that take
into account the hybrid nature of contemporary multiprocessor
architectures consisting of various types of computing units, i.e.
many-core CPUs and multicore GPUs. Today, this approach
should be used to fully exploit the true power of high
performance computers. In order to efficiently deal with very
complex spatial analyses, it is necessary to develop new kinds of
algorithms and computational techniques, which are based on an

effective use of all processing devices (CPU and GPU cores)
available within the nodes of computer clusters.

II. NEW HYBRID ALGORITHM

In this paper, we show how to use hybrid node clusters to
compute primary topographic parameters like aspect, slope, and
curvature for very large data sets, which exceed the
computational resources of one node. We show how to store the
data in cluster distributed memory and how to use different types
of computational devices.

The general outline of the data processing scheme for large
DEM files is as follows:

1. Divide the DEM file into overlapping horizontal stripes
and write them into separate files.

2. Distribute the files among the nodes of the cluster.

3. Start the parallel program on the cluster to process
distributed data. Each process running on a single node
is responsible for distributing work among all available
computational devices (CPU and GPU cores).

4. Locally, compute necessary primary topographic
parameters (e.g. slope, aspect, curvature) in parallel
using CPU and GPU cores.

5. Retrieve the processed data from all nodes.

6. Merge separate output files containing results into one
large DEM file.

Although, we have considered the use of MPI (Message
Passing Interface) for distributing the work among nodes of the
cluster (Step 2 and 5), it can be simply implemented using a shell
script spawned on nodes. We use routines provided by GDAL
library for splitting and merging DEM files (Step 1 and 6).

Geomorphometry.org/2015 Stipiczyński et al.

In: Geomorphometry for Geosciences, Jasiewicz J., Zwoliński Zb., Mitasova H., Hengl T. (eds), 2015. Adam Mickiewicz University in Poznań

- Institute of Geoecology and Geoinformation, International Society for Geomorphometry, Poznań

146

Figure 1. Data distribution scheme

Figure 2. Local computations on a single node

Data distribution scheme among available nodes is presented
in Figure 1. A large input data file (presented on the left hand
side) is divided into horizontal stripes (one stripe for each cluster
node) with overlapping border of 1 pixel. Such a border is
required due to nature of used algorithms (to compute the result
for one grid cell we need its neighbours, see Figure 3). All stripes
are processed in parallel. Then the results of computations are
merged into one big file (right hand side of the figure).

On each node, all CPU and GPU devices are used. The data
are divided into two (or three) horizontal stripes. Two stripes are
always processed by two GPUs. In case of large amount of data
(exceeding the size of GPU memory) the third stripe is assigned
to CPU cores. This approach is presented in Figure 2.

III. DATA FILES

For our numerical experiments we use ten DEM files with

properties presented in Table 1. These files contain elevation

data of Poland area with various cell sizes which result in file

sizes. Figure 4 shows the memory occupation of the devices

used for processing the data.

TABLE 1. PROPERIES OF DEM FILES

Figure 3. Using a data cell and its neighbours

Figure 4. Memory occupation during processing

IV. SOFTWARE, HARDWARE AND RESULTS

Our software is a library of C/C++ functions for computing
primary topographic parameters (slope, aspect, curvature,
insolation). Inside a single node we use OpenMP and CUDA
interfaces for parallel programming. This approach allows using
many CPU and GPU cores at the same time, which increases the
total performance of the computations. Our software also uses the
widely known GDAL/OGR open source library for dealing with
GEOTIFF files.

Tests were run on our Solaris cluster, which consists of 32
hybrid nodes. In each node, there are two Intel Xeon X5650
processors (6 cores each with hyper-threading, 2.67 GHz) and
two NVIDIA Tesla M2050 cards (448 CUDA cores, 3 GB
GDDR5 RAM with ECC off). The nodes are connected using 40
Gbit/s Infiniband. Programs were compiled using NVIDIA
CUDA Toolkit version 5.5 and Intel Cluster Studio version 2013.
Debian GNU/Linux operating system was used.

A comparison of the calculations performed this way with the
results obtained using well known GIS programs (ArcGIS 10.1,
GRASS 6.4.3, GDAL 1.10.1 and QGIS 2.0.1) on a PC with
processor i7 (2.93 GHz, 4 GB RAM) shows that the algorithms
are accurate and very efficient, especially in case of large data
sets (see Figures 5-7).

Geomorphometry.org/2015 Stipiczyński et al.

147

Figure 5. Execution time for slope

Figure 6. Execution time for aspect

Figure 8 and Table 2 present the scalability of our

implementation. We can observe that the speedup grows with

the increasing number of nodes. The best performance is

achieved when only GPUs are used. The use of CPU cores

results in the performance degradation, however it is necessary

for larger data files when the amount of data to be processed by

a single node exceeds the memory capacity of both GPUs.

TABLE 2. EXECUTION TIME (SECONDS) FOR VARIOUS NUMBER OF NODES

Figure 7. Execution time for curvature

Figure 8. Speedup for various number of nodes

REFERENCES

[1] Fang Huang, Dingsheng Liu, Xiaowen Li, Lizhe Wang, Wenbo Xu: 2011:
Preliminary study of a cluster-based open-source parallel GIS based on the
GRASS GIS. Int. J. Digital Earth 4(5): 402-420

[2] Healey R.(ed.), Dovers S.(ed.), Gittings B.(ed.), Mineter M.J.(ed.), 1997:
Parallel Processing Algorithms For GIS. Taylor&Francis

[3] Huayi Wu, Xuefeng Guan, Jianya Gong, 2011: ParaStream: A parallel
streaming Delaunay triangulation algorithm for LiDAR points on multicore
architectures. Computers & Geosciences 37(9): 1355-1363

[4] Osterman A., 2012: Implementation of the r.cuda.los module in the open
source GRASS GIS by using parallel computation on the NVIDIA CUDA
graphic cards. Elektrotechniski Vestnik 79(1-2): 19–24

[5] Soo Hee Han, Joon Heo, Hong Gyoo Sohn and Kiyun Yu, 2009: Parallel

Processing Method for Airborne Laser Scanning Data Using a PC Cluster

and a Virtual Grid. Sensors 9

[6] Xuefeng Guan, Huayi Wua, 2009: Leveraging the power of multi-core
platforms for large-scale geospatial data processing: Exemplified by
generating DEM from massive LiDAR point clouds. Computers and
Geosciences 36

Geomorphometry.org/2015 Stipiczyński et al.

