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Abstract—DEMs  derived from dense remotely sensed
measurements, including lidar- and radar-based DEMs provide
much greater surface detail than traditional interpolated DEMs but
suffer from random noise that perturbs measures ofurface shape
such as slope and flow direction. Smoothing is arffective method
of reducing noise but also tends to impact on impéant surface
features, lowering hilltops, raising valleys and oliterating
important fine detail. This paper describes a multscale adaptive
smoothing approach that responds to both the relieind noise level
in a DEM by smoothing aggressively where the noide larger than
the local relief and smoothing little or not at allwhere noise is less
than relief. The method is simple and efficient anccan be readily
implemented in a raster GIS environment. The methodis
demonstrated on noisy SRTM data.

INTRODUCTION
A digital elevation model (DEM) is an imperfect
representation of a real land surface. The impaat f

geomorphometric applications of the imperfectiomghie DEM
depends on how they affect measures of surfaceesfiagh as
slope, flow direction and curvature.

Through the formative years of
geomorphometry, or digital terrain analysis, mo&EM> were
produced by interpolation of relatively sparse sewtata mostly
derived from topographic maps. Such DEMs are lgcathooth
and the main source of imperfection was the lacéetéil in the
surface form, particularly in low relief areas wheamontours are
widely spaced.

More recently many DEMs are produced from dense %
or

remotely sensed measurements by radar, lidar

photogrammetric methods. These DEMs typically havéeast
one measurement for every grid cell so captureasaridetail
well but the measurements are usually subject tor.efhis

appears as noise in the elevation data, with vgrgiraracteristics
depending on the data source. Measures of shapddpand on
local differences in elevation are severely afféchy random
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noise and tend to be more of a problem in low felieas where
shapes are subtle.

Smoothing by local averaging is an effective praredfor
reducing noise but involves trading off the levélsmoothing
against the preservation of real terrain featumdarge smoothing
kernel removes noise well but tends to obliteratalsfeatures
and rounds sharp edges, while small kernels pregbe terrain
features but do not remove noise effectively. lijeamlsmoothing
method should provide more smoothing where noiséarge
relative to the topographic variation and little m» smoothing
where the noise is much smaller than the topogcapéiation.
The different signal-to-noise ratios can be duddth varying
signal levels (topographic variation) and to vagyimise levels.

This paper describes such an adaptive smoothinigomeéhat
removes noise while preserving terrain featurespomds to
varying noise levels and can also fill in missirgtad It uses a
multi-resolution statistical approach that is effit and can be
readily implemented in a raster GIS environment.

THE ADAPTIVE SMOOTHING METHOD

The adaptive smoothing method is based on the ioebse
[1] but extended to multiple resolutions. Lee’s haoet computes
the local meanz ; and noise-adjusted varian€g ; at location

i,j then derives an estimated value as a weighted cfutie
local mean and the original noise-corrupted value:

Q.
Q,j

where s?is the variance of the noise; ; denotes the actual
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value ati, j and z ; the noise-corrupted value. The effect is that

where the variation in the noisy signal is sigrfitly larger than
the noise, the noisy value is used as estimatedhlachlue since
the noise does not have a big impact; where thati@r is small
compared to the noise the local mean is used, iggltice noise
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significantly. Lee’s method has been used to sm@#Ms, for
example Simard et al [2] who used a Lee-type fite5x5 to
smooth SRTM elevations with a fixed noise standidation of
1.8m

Lee notes that “The use of different window sizéls greatly
affect the quality of processed images. If the wimds too small,
the noise filtering algorithm is not effective.the window is too
large, subtle details of the image will be losttire filtering
process.” The solution to the choice of window simethis
adaptive smoothing method is to smooth over meltipindow
sizes, letting the variance at each window sizérobhow much
the mean at that window size contributes to thienaséd value.

The algorithm accounts for spatially varying noisgiance
and computes the means and variances on nestedwsrgb that
all calculations after the first resolution steg grerformed on
progressively coarser grids, leading to very edfitiprocessing.

The multi-resolution algorithm is similar to a mdtale
Kalman smoothing method [3,4] and consists of deseof
progressive aggregations followed by a series @hements
back to the original resolution.

The algorithm is initialized with:

-0 _ _1 (0P 0 0=

z —z,wo—w,wgq—(vvo),vg—o,n =1 (2)
except at locations with no data which are initiadi with:
w=0wl =0v2=0n= (3)

w is the weighting for each cell, equal to the ipeeiof
variancev, andn is the number of cells with data.

Then for each step from 1 t0i,:

w= wt (4)
W= W (5)
) W'lii'l
= (6)
W
: Wl—l(zi—l_ zl)2
Vbg = " (7)
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Vig = W ®)
wg W
Vi = Vbg * Vg 9)
V= (10)
w
n= nt (11)

:M (12)

mv :li. (13)
w
i
i V:n if m_?}< cgrit
v = Ny (14)
Vlg if m_g\’)a Cgrit

At each step the weights and squared weights arensdl
(4), (5) and the variance-weighted mean is compd The
variance for the group of data poingg is the sum (9) of the

between-group variance,, (7) and the within-group variance
Vyg (8). Between-group variance is the variance due to

differences between group means, and the withinggr@riance
is due to variances between values within the grjugb as in an
ANOVA. The variance of the mean for the groug,is

equivalent to the inverse of the aggregated we{df). The
effective number of cellsi is derived from the weights (12); it

is equal to the number of cells when the weights are all equal
but is less tham when the weights are unequal. The mean noise
variance in the groupnv is derived from the number of cells and
the aggregated weight (13). The final step (14) mames the
group variance with the mean noise variance ansl astatistical
test to decide whether the group variance is semmlugh that the
values in the group can be considered to be egutig mean
value, in which case it takes the variance of tleamas the
variance at that resolution; otherwise it takesgtaup variance.

The critical value ¢2; is computed with degrees of freedom
equal to one less than the effective number ofesahy;; .
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This yields a nested series of means and variamtes calculated meany,,, which is much smaller than the variance of

progressively coarser resolutions that can themrdmbined in
the reverse sequence. This process is initializéd w

lemax = zimax’ Vismax = Vimax (15)
Then for each step from i,,, down to 1:
271 = refing(Z)) (16)
Vit = refing(V)
1 -1
i-1_
Vg = F+v”'l a7)
S
N 41 Zil
zt= F"’f;_l vt (18)

[72]

The smoothed coarse-scale elevatiapand variancey, are

first refined to the next finer resolution (16),ethvariance
calculated by aggregation at that resolution arel ¢dmoothed
variance from the coarser resolution are combingd) (to
produce the smoothed variance at the finer resoluthen the
smoothed elevation is obtained by a weighted sud) ¢f the
elevation aggregated to that resolution and the osimedl

elevation from the coarser resolution. The finauieis z, the
smoothed DEM, and?, the estimated variance.

Each step in the algorithm corresponds to a relstisimple
raster calculation that can be implemented in a.GJSing
Arcinfo GRID, the sums in the first phase can bewated using
the AGGREGATE function over "3 cell groups and the
refinements in the second phase can be calculasath La
FOCALMEAN function, after suitably setting exterasid cell
sizes. There are some minor artifacts in the resh#it could be
reduced using a more sophisticated refinement step.

The method assumes normally distributed and spatial

uncorrelated noise; the degree to which divergdrma those
ideals affects the quality of the smoothing has heen
investigated.

The statistical test (14) is probably the key dgtiishing
feature of this algorithm. It expresses the assiompghat, where
the grouped variance is low enough, the measus@gbns in a
local area should be considered to be randomlyuyext
measurements of a single true elevation i.e. tiaiand surface
is flat. The variance for that group (for the pup®f combining
values in the refinement phase) is then the vagiaot the
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the measurements. This low variance ensures ksatntean
dominates over the samples sindg" <<v'"* in (17).

ESTIMATING NOISE FROM ADEM

To apply this adaptive smoothing algorithm to DERtadan
estimate of variance is required for each pointe fimethod to
estimate noise described here was developed for wite
1 SRTM data (after destriping, filling voids and ming
vegetation offsets, Gallant et al [5]) and wasdms extent tuned
to the characteristics of that DEM particularly tkpatially
correlated nature of the noise. Other data sourdgst require a
different method; in some cases an estimate ofithee might be
provided by the DEM production process.

For each cell a mean value is calculated over anlas from
3 to 5 cells in radius; the annulus means thatemloear the
target cell are excluded from the mean value. Tifierdnce
between the target cell and the mean value is leddzly and the
standard deviation of that difference over a 5 wé&lldow is then
derived. This provides information about the siteariation of
elevations from the mean elevations a moderatartdistaway —
the idea is that this variation should be mostlisasince modest
topographic variation will produce spatially cohareifferences
from the mean which will contribute little to theasdard
deviation of differences.

This initial noise magnitude estimate is still guérratic, so it
is smoothed by two steps of median filtering, tliestfby

aggregation over a5 rectangle and the second over a circular

window with a radius of 5 cells on this coarseneitl.gThe
resulting grid is then refined back to the DEM #ation using
bilinear resampling. The estimate corresponds isenstandard
deviation.

Fig. 1 shows the results of this analysis on thsettond
SRTM DEM over a part of Western Australia wheresedevels
are highly variable.

Note that this method effectively distinguishesn@sn noise
and topography in low relief terrain with long séspbut is
unable to make that distinction in higher relieéas or where
there is an abrupt feature in otherwise low retmfain. The
strategy chosen to overcome this problem was tgrpssively
reduce the estimated noise level as the standardtide of
elevation increased above 5 m.

ADAPTIVE SMOOTHING OFSRTM

Fig. 2 shows shaded relief and Fig. 3 shows slgpeulated
from the 1 second SRTM DEM before and after appboaof
the adaptive smoothing method using the noise aggirfrom



Figure 1. The shaded relief image highlights theastimess of
the low relief areas after adaptive smoothing. Tdve slopes of
around 1-2% that dominate in this landscape arewinmed
by the noise before smoothing. After smoothing tiographic
slopes are clearly apparent. The steeper slopeabeinsouth-
eastern corner of the image are largely unaffedigdthe
smoothing.

DiscussioN

This relatively simple adaptive smoothing algorithm
effectively treats spatially varying noise in DEMsrived from
dense remotely-sensed measurements. The methodalbas
successfully been applied to lidar DEMs using astamt noise
standard deviation of 0.2 m.

The smoothing algorithm also replaces areas of taodih
smoothed data from surrounding areas, due to tiialication
with 0 weights in (3), which can be used as a sinmpéthod for
filling voids.
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Figure 1. Noise standard deviation (m) estimated from SRThk4 da\Western
Australia, 119.0E 33.6S. The square is an aregee$twith higher radar
reflectivity and hence lower noise than the surthog cleared land

Figure 2. Shaded relief of a sub-section of the area in fegdrand 3 from
SRTM data before (left) and after (right) adapsweoothing.
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Figure 3. Slope calculated from 1" SRTM data before (top) afidr (bottom)

adaptive smoothing, using noise standard deviatidtigure 1.



